Уведомления
Авторизуйтесь или зарегистрируйтесь, чтобы оценивать материалы, создавать записи и писать комментарии.
Авторизуясь, вы соглашаетесь с правилами пользования сайтом и даете согласие на обработку персональных данных.
Российские ученые открыли самый эффективный алгоритм для обучения ИИ
Ученые из лаборатории исследований искусственного интеллекта Tinkoff Research создали самый эффективный среди своих аналогов алгоритм обучения и адаптации ИИ. Новый метод, названный ReBRAC, обучает ИИ в четыре раза быстрее и на 40% качественнее мировых аналогов в области обучения с подкреплением.
Сегодня в мире идет что-то вроде гонки систем искусственного интеллекта, периодически подхлестываемой известными инфоповодами последних лет — например, об использовании нейросетей для диагностики тяжелых болезней или об их коммерческих применениях (ChatGPT и ему подобные). Вся эта гонка, однако, сталкивается с серьезными ограничениями: «железо» для ИИ очень требовательное, в первую очередь к видеокартам. Ведущий производитель микросхем, без которых тут не обойтись, тайваньский TSMC, не справляется со спросом на рынке, а его конкуренты по объему делают еще меньше.
В связи с этим разработка российских ученых в области повышения эффективности алгоритмов обучения ИИ может способствовать преодолению технологического и цифрового разрыва в мире между разными странами: более эффективные алгоритмы требуют меньше вычислительных ресурсов. Государства с ограниченными вычислительными мощностями смогут создавать и развивать передовые технологии, адаптировать ИИ под конкретные прикладные задачи, существенно экономя на дорогостоящих экспериментах с ним.
Результаты своей последней работы исследователи представили на международной конференции по машинному обучению и нейровычислениям NeurIPS (The Conference and Workshop on Neural Information Processing Systems). Она прошла с 10 по 16 декабря 2023 года в Новом Орлеане (США). Алгоритм ReBRAC (Revisited Behavior Regularized Actor Critic — «пересмотренный актор-критик с контролируемым поведением») ранее описали в препринте соответствующей работы.

В типичных ИИ-агентах есть два компонента: «актор», действующее лицо, генерирующее выдачу программы, и «критик», который оценивает действия актора по определенной шкале. Ориентируясь на эти оценки, актор со временем меняет свое поведение.
В новой работе ученые применили совместную регуляризацию обоих компонентов, чтобы актор избегал нежелательных действий, а критик, со своей стороны, точнее оценивал их. По отдельности оба улучшения пытались применять и раньше, но до сих пор не получалось сочетать оба подхода с наибольшей эффективностью.
Помимо этого, авторы нового алгоритма увеличили глубину нейронных сетей, используемых в ИИ, что облегчило ей работу с данными и поиск сложных закономерностей в них. Также они повысили эффективность горизонта планирования, изменив модель обучения так, чтобы она учитывала и краткосрочные, и долгосрочные задачи. Для стабилизации результатов обучения (а они часто и непредсказуемо колеблются, иногда даже в зависимости от времени года) исследователи использовали нормализацию слоев нейросети (LayerNorm)
Интегрировав все эти решения в алгоритм-предшественник BRAC от 2019 года, исследователи затем поочередно варьировали параметры каждого нового компонента системы. В итоге им удалось найти такой баланс модификаций, при которых этот уже довольно старый подход четырехлетней давности смог (в форме ReBRAC) показать самую высокую производительность среди всех известных на сегодня аналогов.
Долгое время ученые полагали, что сотни гигантских статуй на острове Пасхи создали представители местной общины под руководством одного вождя. Однако авторы нового исследования поставили эту гипотезу под сомнение. Детальная трехмерная карта главного каменного карьера острова указала на более сложную картину. Вероятно, монументы были плодом творчества и соперничества небольших независимых групп.
Что стало настоящим фундаментом власти — умение обрабатывать землю или контроль над некоторыми культурными растениями? Авторы нового исследования пришли к выводу, что появление первых крупных сообществ и государств зависело не от земледелия в целом, а от выращивания определенных злаков. Эти культуры было легко хранить и, еще важнее, невероятно просто облагать налогом, что и дало толчок появлению цивилизации.
Гамма-излучение, зафиксированное гамма-телескопом «Ферми», по мнению исследователя, может объясняться только распадом вимпов, частиц темной материи, в существовании которых множество других физиков уже разуверились. Если независимые проверки подтвердят открытие, это может существенно изменить космологическую картину мира.
Так называемые зумеры и альфа, несмотря на молодой возраст, уже формируют ключевые поведенческие и потребительские тренды. Ученые Пермского Политеха рассказали, почему обозначение поколений начали с конца алфавита, как альфа и зумеры отличаются в способности к терпеливости, совмещении цифрового и реального «Я», подходу к профессиональной деятельности и отношении к финансам, какое мышление пришло на смену клиповому и как использование искусственного интеллекта повлияет на авторитет родителей.
Коллектив российских ученых из МИРЭА — Российского технологического университета, Центра фотоники двумерных материалов МФТИ, Института металлургии и материаловедения им. А. А. Байкова РАН и ряда других ведущих научных центров провел глубокое исследование кристаллической структуры широко используемых пьезоэлектрических материалов на основе цирконата-титаната свинца. Используя метод рентгеноструктурного анализа, исследователи впервые смогли в деталях установить, как небольшие химические добавки кардинально меняют фазовый состав керамики и напрямую определяют ее электрофизические характеристики. Это открывает путь к целенаправленному дизайну «умных» материалов с заранее заданными свойствами для передовой электроники и сенсорики.
Ученые разработали штамм цианобактерии, способный поглощать в три раза больше фосфора из сточных вод
Фосфор – элемент, играющий ключевую роль в росте растений. В сельском хозяйстве он используется в составе многих минеральных удобрений. В то же время фосфор, содержащийся в сточных водах — серьезный загрязнитель, который при попадании в водоемы нарушает баланс экосистем и вызывает цветение водорослей. Ученые Национального исследовательского центра «Курчатовский институт» и Южного федерального университета предложили новый экологичный способ выделения фосфора из сточных вод с помощью фотосинтезирующих микроорганизмов.
Человеческие языки разнообразны, но это разнообразие ограничивается повторяющимися закономерностями. Пытаясь описать правила, которым подчиняются различия в грамматике, лингвисты сформулировали ряд так называемых грамматических универсалий — утверждений, предположительно верных для всех или большинства языков мира. Международная команда ученых провела статистический анализ на материале 2430 языков и обнаружила, что соответствующими действительности можно считать около трети таких утверждений.
По расчетам, большинство «гостей» из других звездных систем летят к Земле примерно со стороны созвездия Геркулес. Скорее всего, они время от времени падают на нашу планету, просто мы еще не научились это замечать. Как удалось вычислить, чаще всего они должны падать зимой и где-то в окрестностях экватора.
Ученые открыли новый, ранее неизвестный способ передвижения бактерий по поверхностям, для которого не нужны жгутики. Эти микроорганизмы на краю колонии переваривают сахара, выделяют метаболиты и создают осмотическое давление. Оно вызывает микроскопическое «цунами», и на нем бактерии катятся вперед.
Вы попытались написать запрещенную фразу или вас забанили за частые нарушения.
Понятно
Из-за нарушений правил сайта на ваш аккаунт были наложены ограничения. Если это ошибка, напишите нам.
Понятно
Наши фильтры обнаружили в ваших действиях признаки накрутки. Отдохните немного и вернитесь к нам позже.
Понятно
Мы скоро изучим заявку и свяжемся с Вами по указанной почте в случае положительного исхода. Спасибо за интерес к проекту.
Понятно

Последние комментарии