Уведомления
Авторизуйтесь или зарегистрируйтесь, чтобы оценивать материалы, создавать записи и писать комментарии.
Авторизуясь, вы соглашаетесь с правилами пользования сайтом и даете согласие на обработку персональных данных.
Российские ученые открыли самый эффективный алгоритм для обучения ИИ
Ученые из лаборатории исследований искусственного интеллекта Tinkoff Research создали самый эффективный среди своих аналогов алгоритм обучения и адаптации ИИ. Новый метод, названный ReBRAC, обучает ИИ в четыре раза быстрее и на 40% качественнее мировых аналогов в области обучения с подкреплением.
Сегодня в мире идет что-то вроде гонки систем искусственного интеллекта, периодически подхлестываемой известными инфоповодами последних лет — например, об использовании нейросетей для диагностики тяжелых болезней или об их коммерческих применениях (ChatGPT и ему подобные). Вся эта гонка, однако, сталкивается с серьезными ограничениями: «железо» для ИИ очень требовательное, в первую очередь к видеокартам. Ведущий производитель микросхем, без которых тут не обойтись, тайваньский TSMC, не справляется со спросом на рынке, а его конкуренты по объему делают еще меньше.
В связи с этим разработка российских ученых в области повышения эффективности алгоритмов обучения ИИ может способствовать преодолению технологического и цифрового разрыва в мире между разными странами: более эффективные алгоритмы требуют меньше вычислительных ресурсов. Государства с ограниченными вычислительными мощностями смогут создавать и развивать передовые технологии, адаптировать ИИ под конкретные прикладные задачи, существенно экономя на дорогостоящих экспериментах с ним.
Результаты своей последней работы исследователи представили на международной конференции по машинному обучению и нейровычислениям NeurIPS (The Conference and Workshop on Neural Information Processing Systems). Она прошла с 10 по 16 декабря 2023 года в Новом Орлеане (США). Алгоритм ReBRAC (Revisited Behavior Regularized Actor Critic — «пересмотренный актор-критик с контролируемым поведением») ранее описали в препринте соответствующей работы.

В типичных ИИ-агентах есть два компонента: «актор», действующее лицо, генерирующее выдачу программы, и «критик», который оценивает действия актора по определенной шкале. Ориентируясь на эти оценки, актор со временем меняет свое поведение.
В новой работе ученые применили совместную регуляризацию обоих компонентов, чтобы актор избегал нежелательных действий, а критик, со своей стороны, точнее оценивал их. По отдельности оба улучшения пытались применять и раньше, но до сих пор не получалось сочетать оба подхода с наибольшей эффективностью.
Помимо этого, авторы нового алгоритма увеличили глубину нейронных сетей, используемых в ИИ, что облегчило ей работу с данными и поиск сложных закономерностей в них. Также они повысили эффективность горизонта планирования, изменив модель обучения так, чтобы она учитывала и краткосрочные, и долгосрочные задачи. Для стабилизации результатов обучения (а они часто и непредсказуемо колеблются, иногда даже в зависимости от времени года) исследователи использовали нормализацию слоев нейросети (LayerNorm)
Интегрировав все эти решения в алгоритм-предшественник BRAC от 2019 года, исследователи затем поочередно варьировали параметры каждого нового компонента системы. В итоге им удалось найти такой баланс модификаций, при которых этот уже довольно старый подход четырехлетней давности смог (в форме ReBRAC) показать самую высокую производительность среди всех известных на сегодня аналогов.
Израильские специалисты выяснили, что для гарантированного выигрыша в онлайн-шахматах достаточно получить помощь специальной компьютерной программы всего в трех ключевых моментах игры. Этот метод настолько изощрен, что современные автоматические системы защиты могут пропустить его, списав гениальные ходы на внезапное озарение игрока. В мире, где ежедневно закрывают тысячи аккаунтов игроков в шахматы за нечестную игру, возникает новая, более сложная для обнаружения угроза — избирательное читерство.
Амфибии страдают от отдельных видов смертельно опасных заболеваний, среди которых выделяются грибковые инфекции. Ученые выяснили, что торговля лягушками из Бразилии, часто бывшими носителями местного вида грибка, привела к его глобальному распространению.
Повторное изучение окаменелости галлюцигении, впервые описанной в 1970-х годах, помогло палеонтологам больше узнать о рационе этого древнего существа. Ответ на вопрос о питании нашли не в ее останках, а на теле предполагаемой добычи.
Повторное изучение окаменелости галлюцигении, впервые описанной в 1970-х годах, помогло палеонтологам больше узнать о рационе этого древнего существа. Ответ на вопрос о питании нашли не в ее останках, а на теле предполагаемой добычи.
Амфибии страдают от отдельных видов смертельно опасных заболеваний, среди которых выделяются грибковые инфекции. Ученые выяснили, что торговля лягушками из Бразилии, часто бывшими носителями местного вида грибка, привела к его глобальному распространению.
Израильские специалисты выяснили, что для гарантированного выигрыша в онлайн-шахматах достаточно получить помощь специальной компьютерной программы всего в трех ключевых моментах игры. Этот метод настолько изощрен, что современные автоматические системы защиты могут пропустить его, списав гениальные ходы на внезапное озарение игрока. В мире, где ежедневно закрывают тысячи аккаунтов игроков в шахматы за нечестную игру, возникает новая, более сложная для обнаружения угроза — избирательное читерство.
От рыб произошли все наземные позвоночные, включая нас, но как именно рыбы стали главным населением морей — до последнего времени оставалось неясным. Авторы новой научной работы попытались доказать, что причиной этого было вымирание, возможно, вызванное белыми ночами.
Среди самых интригующих открытий космического телескопа «Джеймс Уэбб» — компактные объекты, получившие название «маленькие красные точки». Их видели только в самых дальних уголках Вселенной. Большинство возникло в первый миллиард лет после Большого взрыва, и ученые предполагали, что такие источники представляют собой небольшие компактные галактики. Однако международная команда астрономов пришла к иному выводу. Они предположили, что на самом деле «маленькие красные точки» — черные дыры, окруженные массивной газовой оболочкой.
Ученые задались вопросом: почему два расположенных по соседству спутника Юпитера такие разные, ведь на Ио повсеместно извергаются вулканы, а Европа полностью покрыта многокилометровой коркой льда. Есть версия, что Ио когда-то тоже была богата водой, но по итогам недавнего исследования это сочли неправдоподобным.
Вы попытались написать запрещенную фразу или вас забанили за частые нарушения.
Понятно
Из-за нарушений правил сайта на ваш аккаунт были наложены ограничения. Если это ошибка, напишите нам.
Понятно
Наши фильтры обнаружили в ваших действиях признаки накрутки. Отдохните немного и вернитесь к нам позже.
Понятно
Мы скоро изучим заявку и свяжемся с Вами по указанной почте в случае положительного исхода. Спасибо за интерес к проекту.
Понятно

Последние комментарии