#машинное обучение

Позавчера, 11:39
Андрей Коршунов
3 579

Трудно ли создать машинный сверхинтеллект? Поможет ли ИИ перейти к новому технологическому укладу? И как обучать искусственный разум на малом количестве примеров? Какие сложности возникают при взаимодействии с умными роботами, обсудили с директором центра когнитивного моделирования МФТИ, руководителем научной группы «Нейросимвольная интеграция» в Институте искусственного интеллекта AIRI Александром Пановым.

27 ноября
ФизТех
130

В рамках совместной работы физики из Китая и России обучили графовую нейронную сеть поиску кристаллов с высоким показателем двулучепреломления. Разработанный подход позволит ускорить поиск новых материалов с заданными оптическим свойствами.

26 ноября
Марат Хамадеев
8 682

Генеральный директор Института искусственного интеллекта AIRI, профессор РАН Иван Оселедец — о семье, математике и о том, что ждет область искусственного интеллекта в самом ближайшем будущем

7 ноября
НИУ ВШЭ
114

Исследователи из НИУ ВШЭ разработали модель машинного обучения, которая предсказывает риск развития осложнений у пациентов, перенесших инфаркт миокарда. В модели впервые учли генетические данные, что позволило точнее оценить риск долгосрочных осложнений.

31 октября
Любовь Соковикова
758

Плоскоклеточный рак головы и шеи входит в десятку наиболее распространенных и агрессивных видов онкологических заболеваний — пятилетняя выживаемость пациентов составляет 50-67 процентов. Недавно международная исследовательская группа выяснила, как раковые клетки при этой плоскоклеточной карциноме взаимодействуют с окружающей их средой. Открытие может помочь в диагностике и лечении онкопатологии.

20 сентября
ПНИПУ
133

Титановые сплавы широко используют в аэрокосмической, медицинской и автомобильной промышленности из-за высокой прочности, малого веса и устойчивости к коррозии. Однако нехватка экспериментальных данных создает трудности с прогнозированием их характеристик, что замедляет и ухудшает производство. Ученые Пермского Политеха разработали программу для нейросетей, которая с высокой точностью предсказывает показатель шероховатости поверхности сплава. От него зависит износ детали при трении с другими механизмами или поверхностью, а также противостояние коррозии.

18 сентября
МТУСИ
160

Ученые МТУСИ проанализировали возможности интеграции предложенной ими модели в систему защиты веб-приложений. Внедрение автоматизированных инструментов для обнаружения потенциально фишинговых URL-адресов на ранних стадиях их проникновения в сеть поможет существенно снизить риски для пользователей и организаций.

12 сентября
Полина Меньшова
1 067

Хроническое повышенное кровяное давление оказалось возможно определить без тонометра и других привычных инструментов. Алгоритм, который анализирует аудиозаписи человеческого голоса и распознает в них биомаркеры гипертонии, разработали в Канаде.

5 сентября
НИУ ВШЭ
234

Исследователи Центра ИИ НИУ ВШЭ, AIRI и Бременского университета разработали новый метод редактирования изображений на основе глубинного обучения — StyleFeatureEditor. Он позволяет точно воссоздавать мельчайшие детали изображения и сохранять их при редактировании. С его помощью пользователи смогут изменять цвет волос или выражение лица без потери качества изображения.

27 августа
ЮФУ
129

Коллектив ЮФУ разработал инновационную микрофлюидную систему, способную работать под высоким давлением и контролировать состояние катализатора и продукты с помощью спектральных методов. Эта инновационная разработка открывает новые возможности для более быстрого и эффективного синтеза материалов, используемых в клеях, высокоэффективных пластмассах, растворителях и моющих средствах.

23 августа
КБГУ
141

Специалисты КБГУ разработали новую нейросетевую модель для диагностики инфаркта миокарда. При этом использовался простой математический метод автоматической классификации — алгоритм k-ближайших соседей, который не требует больших вычислительных ресурсов и доступа к платным облачным сервисам, что делает его установку доступной и недорогой. Сегодня на обслуживание одного пациента в поликлиниках уходит до 12 минут, а с помощью разработанной программы это время может сократиться почти вдвое.

30 июля
Сколтех
202

Ученые из Сколтеха показали непригодность широко используемого класса моделей под общим названием «часы старения» для оценки эффективности перепрограммирования клеток — радикального омоложения ткани в живом организме.

25 июля
НИУ ВШЭ
194

Инфляция — один из ключевых показателей экономической стабильности, и точное прогнозирование ее уровня в различных регионах имеет большое значение для государства, бизнеса и домохозяйств. Татьяна Букина и Дмитрий Кашин из НИУ ВШЭ в Перми выяснили, что машинное обучение для прогнозирования инфляции превосходит классические эконометрические модели в долгосрочных прогнозах.

17 июля
РНФ
181

Исследователи проанализировали научные статьи о диагностике рака кожи с помощью технологии искусственного интеллекта и выяснили, что чаще всего для этой цели используют сверточные нейросети, основанные на глубоком обучении. При этом самый точный результат (93 процента точности) дают системы, основанные на машинном обучении, что делает их наиболее предпочтительным методом диагностики. Кроме того, за последние пять лет точность таких алгоритмов повысилась более чем на девять процентов.

27 июня
НИУ ВШЭ
147

Тематические модели — алгоритмы машинного обучения, способные сортировать большие объемы текстов по темам. Исследователи из НИУ ВШЭ в Санкт-Петербурге сравнили пять тематических моделей и определили, какие из них работают лучше. Наименьшее число ошибок показали две модели, одна из которых, GLDAW, — разработка Лаборатории социальной и когнитивной информатики НИУ ВШЭ в Санкт-Петербурге.

13 июня
НИУ ВШЭ
217

Ученые Центра ИИ и Института искусственного интеллекта и цифровых наук факультета компьютерных наук НИУ ВШЭ применили классические алгоритмы обучения с подкреплением для настройки генеративных потоковых сетей (GFlowNets). Это позволило улучшить работу GFlowNets, которые применяются уже три года для решения сложнейших научных задач на этапах моделирования, генерации гипотез и экспериментального проектирования.

29 апреля
Андрей Папиш
3 388

Японские сейсмологи обучили нейросеть на большом каталоге сгенерированной сейсмической активности, чтобы выяснить, как искусственный интеллект анализирует эти данные. Предсказания лабораторных землетрясений оказались точными вплоть до часов перед главным ударом.

8 апреля
МТУСИ
316

Аномалии в интернет-трафике — это непредсказуемые, необычные или отклоняющиеся от установленных норм взаимодействия в сети. Они могут указывать на наличие вредоносных программ, взломов или других нежелательных событий. Возможности методов машинного обучения открывают новые горизонты для точной классификации трафика в обнаружении аномальных значений для предотвращения кибератак. Один из таких методов предложил магистрант МТУСИ.

25 марта
Сколтех
309

Ученые из Сколтеха представили метод для изучения свойств поликристаллов, композитных материалов и многофазных систем с помощью машинного обучения. Точность результатов расчетов с применением нового метода сопоставима с точностью квантово-механических методов, которые можно использовать только для материалов, состоящих не более чем из нескольких сотен атомов. Еще одно преимущество нового метода — в возможности обучения потенциала на так называемых локальных окружениях атомов.

20 марта
Егор Быковский
4 104

Корреспондент Naked Science поговорил с заведующим лабораторией машинного обучения в науках о Земле МФТИ, старшим научным сотрудником Института океанологии РАН Михаилом Криницким о том, чем отличаются машинное обучение и искусственный интеллект, как нейронные сети уже сегодня предсказывают погоду, каким образом математик может стать океанологом и почему океанолог в наше время обязан быть немного математиком, чем так хорош для студентов и ученых проект «Плавучий университет» и есть ли у паучков интеллект.

Подтвердить?
Подтвердить?
Причина отклонения
Подтвердить?
Не получилось опубликовать!

Вы попытались написать запрещенную фразу или вас забанили за частые нарушения.

Понятно
Жалоба отправлена

Мы обязательно проверим комментарий и
при необходимости примем меры.

Спасибо
Аккаунт заблокирован!

Из-за нарушений правил сайта на ваш аккаунт были наложены ограничения. Если это ошибка, напишите нам.

Понятно
Что-то пошло не так!

Наши фильтры обнаружили в ваших действиях признаки накрутки. Отдохните немного и вернитесь к нам позже.

Понятно
Лучшие материалы
Войти
Регистрируясь, вы соглашаетесь с правилами использования сайта и даете согласие на обработку персональных данных.
Ваша заявка получена

Мы скоро изучим заявку и свяжемся с Вами по указанной почте в случае положительного исхода. Спасибо за интерес к проекту.

Понятно
Ваше сообщение получено

Мы скоро прочитаем его и свяжемся с Вами по указанной почте. Спасибо за интерес к проекту.

Понятно