• Добавить в закладки
  • Facebook
  • Twitter
  • Telegram
  • VK
  • Печать
  • Email
  • Скопировать ссылку
Рубрика выходит при поддержке
21.11.2021, 10:05
Мария Осетрова
30 369

Глубокое обучение с подкреплением вводит квантовую систему в «состояние кота Шредингера»

❋ 3.6

Физики из Японии и Австралии при помощи моделирования показали, что одна из разновидностей машинного обучения — обучение с подкреплением — подходит для точного управления квантовым состоянием системы.

Кот Шредингера, находящийся одновременно в двух квантовых состояниях, в представлении художника. / © Okinawa Institute of Science and Technology
Кот Шредингера, находящийся одновременно в двух квантовых состояниях, в представлении художника. / © Okinawa Institute of Science and Technology / Автор: Владимир Богданов

Чтобы эффективно использовать квантовые системы для записи, хранения и обработки информации, нужны методы, которые позволяют точно измерять состояние квантовой системы и управлять ею. Проблема в том, что в квантовом мире любое взаимодействие системы с окружающей средой, включая произведенные измерения, немного изменяет ее состояние. Это приводит к ошибкам, которые затрудняют управление квантовыми системами, особенно в реальном времени.

Для поддержания системы в желаемом состоянии используют системы управления с обратной связью, которые реагируют на небольшие изменения системы и возвращают ее в требуемое состояния. Для простых систем силу, которую нужно при этом приложить, можно рассчитать аналитически. Однако в более сложных — и приближенных к реальной жизни — случаях готового решения нет.

В своей работе с использованием моделирования физики показали, что глубокое обучение с подкреплением эффективно справляется с этой задачей для системы с нелинейным гамильтонианом — функцией, которая описывает ее полную энергию. Обучением с подкреплением называют один из методов машинного обучения, при котором алгоритм обучается, взаимодействуя со средой и получая обратную связь. Значит, в каждом цикле обучения алгоритм как-то воздействует на состояние квантовой системы, а затем узнает, что из этого вышло.

До обучения взаимодействия были случайными, и поначалу алгоритму не удавалось поддерживать систему в нужном состоянии:

Шарик на холме визуализирует систему в нужном квантовом состоянии, задача алгоритма — удержать шарик в синей области / © Okinawa Institute of Science and Technology

Но уже через 300 циклов обучения эта задача давалась алгоритму довольно легко:

Шарик остается в синей зоне, но колебания его положения (красная линия) еще довольно большие / © Okinawa Institute of Science and Technology

А спустя 5000 циклов амплитуда необходимых воздействий стала минимальной:

Шарик на месте, колебания амплитуды приложенной силы (синяя линия), как и колебания положения шарика (красная линия), минимальны / © Okinawa Institute of Science and Technology

Таким образом, ученым удалось показать, что глубокое обучение с подкреплением эффективно возвращает систему в почти чистое «состояние кота Шредингера», при котором система находится одновременно в двух состояниях, как и кот в знаменитом мысленном эксперименте Эрвина Шредингера. При этом обучение происходит полностью автономно. Авторы статьи считают, что в дальнейшем и другие методы искусственного интеллекта можно использовать для управления квантовыми системами.

Статья с результатами исследования опубликована в журнале Physical Review Letters.

Нашли опечатку? Выделите фрагмент и нажмите Ctrl + Enter.
Подписывайтесь на нас в Telegram, Яндекс.Новостях и VK
Предстоящие мероприятия
16 сентября, 13:21
Адель Романова

Во время недавних наблюдений карликовой планеты Квавар что-то неожиданно почти полностью закрыло ее собой. Астрономы уверены, что это не ее спутник Вейвот и не одно из двух известных колец этого маленького мира на краю Солнечной системы.

16 сентября, 11:56
Александр Березин

Периодически нейросети в своих ответах галлюцинируют, предлагая пользующимися их услугами людям выпить яд под видом лекарства и так далее. Новая научная работа показала, что эта проблема связана с самой природой нейросети. Хотя ее вероятность можно понизить, устранить полностью невозможно.

17 сентября, 10:32
Игорь Байдов

На юго-востоке Чехии археологи обнаружили не просто отдельные артефакты, а целый набор инструментов, который 30 тысяч лет назад носил с собой охотник-собиратель. Открытие дает представление о повседневной жизни этих людей, населявших территорию современной Центральной Европы.

12 сентября, 14:03
ТюмГУ

Исследования самодержавия могут пролить свет на феномен, исконно свойственный российской государственности, а значит, переосмыслить исторический путь России и выработку новых направлений развития, к такому выводу пришел ученый ТюмГУ.

16 сентября, 13:21
Адель Романова

Во время недавних наблюдений карликовой планеты Квавар что-то неожиданно почти полностью закрыло ее собой. Астрономы уверены, что это не ее спутник Вейвот и не одно из двух известных колец этого маленького мира на краю Солнечной системы.

15 сентября, 10:36
Игорь Байдов

Самая большая планета в Солнечной системе, всегда поражавшая воображение своими колоссальными размерами, немного сдала позиции. Новые высокоточные измерения орбитального зонда NASA показали, что Юпитер не такой большой и круглый, как считали астрономы последние 40 лет.

12 сентября, 14:03
ТюмГУ

Исследования самодержавия могут пролить свет на феномен, исконно свойственный российской государственности, а значит, переосмыслить исторический путь России и выработку новых направлений развития, к такому выводу пришел ученый ТюмГУ.

9 сентября, 11:03
Адель Романова

Третий известный межзвездный объект 3I/ATLAS летит примерно вдвое быстрее обоих своих предшественников. По расчетам, его вряд ли могло выбросить из родной планетной системы с подобной скоростью, и так разогнаться по пути он тоже не мог.

11 сентября, 12:04
ПНИПУ

Все больше покупателей начинают отказываться от привычки делать покупки на маркетплейсах, а число новых продавцов на площадках практически не увеличилось. Аналитика показывает, что за первый квартал 2025 года — прирост селлеров составил всего 0,45% по сравнению с аналогичным периодом прошлого года. В то же время, маркетплейсы активно расширяют сеть пунктов выдачи, особенно в регионах, где физическое присутствие всех брендов невозможно. Ученые Пермского Политеха рассказали, почему люди стали реже совершать покупки на маркетплейсах.

[miniorange_social_login]

Комментарии

Написать комментарий
Подтвердить?
Подтвердить?
Причина отклонения
Подтвердить?
Не получилось опубликовать!

Вы попытались написать запрещенную фразу или вас забанили за частые нарушения.

Понятно
Жалоба отправлена

Мы обязательно проверим комментарий и
при необходимости примем меры.

Спасибо
Аккаунт заблокирован!

Из-за нарушений правил сайта на ваш аккаунт были наложены ограничения. Если это ошибка, напишите нам.

Понятно
Что-то пошло не так!

Наши фильтры обнаружили в ваших действиях признаки накрутки. Отдохните немного и вернитесь к нам позже.

Понятно
Лучшие материалы
Закрыть
Войти
Регистрируясь, вы соглашаетесь с правилами использования сайта и даете согласие на обработку персональных данных.
Ваша заявка получена

Мы скоро изучим заявку и свяжемся с Вами по указанной почте в случае положительного исхода. Спасибо за интерес к проекту.

Понятно