#квантовый компьютер

18 ноября
Evgenia Vavilova
32 605

Швейцарские физики создали первый работающий механический кубит. Свойство суперпозиции смогли реализовать через осцилляции пьезоэлектрического диска.

29 октября
Evgenia Vavilova
34 000

То, насколько классический компьютер сможет воссоздать определенное квантовое состояние, описывается свойством под названием «магия». Ученые из США выяснили, существует ли резкий переход между состоянием «можем обойтись обычным компьютером» и «подойдет только квантовый».

3 октября
Evgenia Vavilova
21 306

Исследователи впервые осуществили телепортацию логического кубита, применив методы, устойчивые к ошибкам. Задачу решили для процессора на основе захваченных ионов.

17 августа
Evgenia Vavilova
498

Ученые Йельского университета и Национальной лаборатории Брукхейвена повысили время работы сверхпроводящих квантовых устройств за счет нового подхода к дизайну микросхем и выбору материалов. Новая парадигма позволила увеличить время когерентности кубитов до одной миллисекунды. Результаты опубликованы в журнале Nature communications.

5 августа
НИУ ВШЭ
7 576

Ученые из Российского квантового центра, НИУ ВШЭ и МФТИ изучили фазовый переход в одномерных системах с беспорядком в присутствии коррелированного перескока частиц. Работа открывает возможности для создания устойчивых одномерных атомных ловушек, квантовых нитей, кристаллов с одномерной проводимостью.

16 мая
ФизТех
1 697

Ученые МФТИ, МГУ, МИСИС и ВНИИА имени Духова совместно с коллегами из Франции реализовали новый вид ячейки памяти. Проведенные эксперименты и теоретическая модель подтвердили, что джозефсоновский вихрь в переходе «сверхпроводник — нормальный металл — сверхпроводник» можно использовать как носитель информации. Принцип работы, заложенный в устройстве, позволит превзойти имеющиеся разработки по скорости и энергоэффективности.

19.12.2023
ФизТех
8 955

Группа ученых из МФТИ, ВНИИ автоматики имени Н. Л. Духова, Института теоретической и прикладной электродинамики и Института радиотехники и электроники имени В. А. Котельникова построила теоретическую модель, которая описывает динамику открытых квантовых систем вблизи особых точек. Работа помогает лучше понять и описать процессы обмена энергией в квантовых устройствах, таких как квантовые компьютеры и сенсоры.

01.08.2023
МТУСИ
576

Ученые МТУСИ совместно с коллегами создали научный стенд по исследованию квантовой связи в атмосфере, в котором задействовано серийное оборудование российских фирм, производящих блоки квантовой связи и терминалы атмосферной оптической связи. Предварительные исследования, выполненные на этом стенде, выявили необходимость определенной доработки серийного оборудования, как терминалов оптической связи, так и модернизации алгоритмов синхронизации и автоматической подстройки в блоках квантовой связи.

24.07.2023
ФизТех
3 538

Физики из МФТИ совместно с коллегами из Франции экспериментально показали, что атомы примесей в полупроводниках могут формировать долгоживущие устойчивые квантовые состояния. Значит, эти атомы можно использовать в качестве кубитов в квантовом компьютере.

06.07.2023
Университет Лобачевского
15 120

С использованием суперкомпьютера ННГУ «Лобачевский» нижегородские физики совместно с учеными МГУ и Российского квантового центра (Москва) разработали новый метод для управления квантовыми объектами — кубитами, альтернативой квантовым разработкам Google и IBM. Это позволяет решить проблему санкционных закупок СВЧ-электроники, необходимой для проведения квантовых вычислений на сверхпроводниках. При этом повышаются скорость и точность операций.

28.06.2023
РНФ
463

Российские ученые получили металлорганические соединения с переключаемыми магнитными свойствами. Входящие в их состав ионы металлов способны обратимо менять спиновое состояние в ответ на внешние воздействия, а следовательно, кодировать один бит информации в одной молекуле. Технология поможет в разработке устройств памяти с большей емкостью, а также еще на один шаг приблизит исследователей к созданию полноценного квантового компьютера из молекулярных материалов.

05.04.2023
Александр Речкин
196

Участники мероприятия узнают, как открытия в квантовой физики изменят мир в ближайшем будущем.

09.02.2023
НИУ ВШЭ
2 691

Исследователи Центра квантовых метаматериалов МИЭМ НИУ ВШЭ совместно с коллегами из Германии и Великобритании предложили алгоритм автоматического сжатия произвольных сред (Automated Compression of Arbitrary Environments — ACE). Он дает качественно новые возможности точных вычислений для исследования динамики квантовых систем. По мнению ученых, новый метод поможет в проектировании квантовых компьютеров и новых систем связи.

12.07.2022
МТУСИ
580

Использование новых волокон помогло достигнуть рекордных скоростей передачи информации, порядка нескольких петабит в секунду. Кроме того, за счет того, что технология пространственного уплотнения позволяет снизить число волоконно-оптических кабелей, она перспективна для экономии места укладки кабелей в сетях доступа, упрощения структуры трактов передачи информации, уменьшения количества кабелей в центрах хранения и обработки данных.

30.12.2021
Евгений Глушков
17 875

Стремительный прогресс последних лет и даже последних месяцев в области квантовых технологий очень впечатляет. Появляются все новые смелые эксперименты и устройства, о которых даже мечтать не могли основатели квантовой механики! Naked Science расскажет о том, что происходит прямо сейчас, в этой четвертой статье нашего «квантового цикла».

19.12.2021
Мария Осетрова
19 192

Физики из Констанцского университета в Германии пересекли пучок свободных электронов лучом лазера и получили новый тип кубитов — универсальный и потенциально устойчивый к потере информации.

15.12.2021
Евгений Глушков
23 487

За последние двадцать лет количество кубитов в квантовых процессорах увеличилось с одного-двух до сотни (в зависимости от технологической платформы). Несмотря на такой впечатляющий прогресс, полноценный квантовый компьютер, на котором можно было бы запустить произвольный квантовый алгоритм, так и не был создан. Почему это по-прежнему очень сложная инженерная задача, сравнимая с высадкой человека на Луну, и как ее решают по всему миру (в том числе, и в России), Naked Science расскажет в этой третьей по счету статье нашего «квантового цикла».

30.11.2021
Мария Осетрова
15 736

Ученые из США и Великобритании научились управлять кубитами в ионных ловушках без использования лазера, достигнув сопоставимой с лазерными методами точности и ускорив процесс примерно в четыре раза.

21.11.2021
Мария Осетрова
30 327

Физики из Японии и Австралии при помощи моделирования показали, что одна из разновидностей машинного обучения — обучение с подкреплением — подходит для точного управления квантовым состоянием системы.

16.11.2021
Евгений Глушков
29 450

Ричард Фейнман предложил идею квантовых компьютеров не так давно, всего 40 лет назад, и она тогда казалась совершенно поразительной, хотя на столах у многих уже стояли персональные компьютеры. Но вот воплотить в жизнь смелые идеи Фейнмана и Юрия Манина оказалось куда сложнее, чем думали. Больше двух десятилетий ученые и инженеры по всему миру потратили, исследуя различные варианты воплощения квантовых битов «в железе».

Подтвердить?
Подтвердить?
Причина отклонения
Подтвердить?
Не получилось опубликовать!

Вы попытались написать запрещенную фразу или вас забанили за частые нарушения.

Понятно
Жалоба отправлена

Мы обязательно проверим комментарий и
при необходимости примем меры.

Спасибо
Аккаунт заблокирован!

Из-за нарушений правил сайта на ваш аккаунт были наложены ограничения. Если это ошибка, напишите нам.

Понятно
Что-то пошло не так!

Наши фильтры обнаружили в ваших действиях признаки накрутки. Отдохните немного и вернитесь к нам позже.

Понятно
Лучшие материалы
Войти
Регистрируясь, вы соглашаетесь с правилами использования сайта и даете согласие на обработку персональных данных.
Ваша заявка получена

Мы скоро изучим заявку и свяжемся с Вами по указанной почте в случае положительного исхода. Спасибо за интерес к проекту.

Понятно
Ваше сообщение получено

Мы скоро прочитаем его и свяжемся с Вами по указанной почте. Спасибо за интерес к проекту.

Понятно