• Добавить в закладки
  • Facebook
  • Twitter
  • Telegram
  • VK
  • Печать
  • Email
  • Скопировать ссылку
21 мая, 10:45
Редакция Naked Science
1
173

В МФТИ разработали эффективную систему радарной ориентации для беспилотных автомобилей

❋ 4.7

RadarSFEMOS определила расположение и движение объектов с большой точностью в дождь, снег и туман. До сих пор беспилотные машины тяжело справляются с вождением в таких условиях, и без решения этой проблемы их массовое применение проблематично. Новую технологию со временем планируют внедрить на отечественных фурах и такси.

Снег, туман и дождь до сих пор очень непростая среда для беспилотных авто. Авторы новой научной работы пытаются смягчить эту ситуацию / © AI Image Generator

Сегодня в мире есть два подхода к беспилотным авто — Tesla и всех остальных. Первый полагается на вождение исключительно по данным камер: нейросеть для этого обучается на вождении обычных людей, которые, как известно, смотрят на дорогу только в видимом диапазоне. Альтернативный подход опирается на дополнительные сенсорные системы. Чаще всего это лидары, дающие подробную 3D-картину дорожной обстановки.

Однако это решение весьма проблематично. Дело не только в том, что набор лидаров все еще стоит как бюджетное авто, но и в качественных недостатках. В частности, в туман и снег видимость для них падает примерно до нулевой. Человек все еще может что-то разобрать на дороге, а беспилотное авто с лидаром в таких условиях встанет. Другая сложность: поскольку люди-водители лишены лидаров, обучать нейросети использованию лидарных данных сложно, выборки малы, отчего часты галлюцинации. Так называют ситуации, когда нейросеть видит на дороге то, чего там нет, и предпринимает, например, фантомное торможение, то есть тормозит на пустой дороге, рискуя тем, что в машину под ее управлением въедут сзади.

Некоторые научные группы считают радары более разумной альтернативой. В отличие от лидаров, радарное излучение дает картинку и в непогоду, водяные капли относительно слабо поглощают радиоволны. Но поскольку их длина больше, чем у лидарного излучения, то данные от них меньшего разрешения, более разреженные. Кроме того, сигналы радаров в реальных дорожных условиях сталкиваются со множеством шумов, артефактов и нулем радиозаметной разметки на дорожном полотне. А без нее сложно обучать нейросети, способные управлять машиной, опираясь на радар. ПО для таких систем намного сложнее в разработке, чем, собственно, «железо».

Поэтому ученые из МФТИ разработали новую самообучающуюся систему обработки данных 4D-радаров RadarSFEMOS. Статью об этом опубликовали в журнале IEEE Robotics and Automation Letters. От предшественников система отличается более эффективным шумоподавлением, а также повышенной способностью определять направление и скорость движения объектов в окружающей среде. Это важно, поскольку в норме для радиолокации тем сложнее заметить движущийся объект, чем ближе его скорость к самой машине, на которой установлен радар Определение направления при этом происходит без специальной разметки.

Общая схема работы новой системы алгоритмов / © Yufei Liu et al.

Для этого RadarSFEMOS применила диффузионную модель шумоподавления, очищающую радарные данные от шумов за миллисекунды. Чтобы идентифицировать предметы, окружающие радар, система применила трансформерный анализатор с адаптивной архитектурой. Это позволило различать объекты при всего 5-10 точках отражения радарных волн на квадратный метр проекции окружающих объектов. Лидарные системы на сегодня способны сделать это как минимум при сотне точек на квадратный метр.

Алгоритмы RadarSFEMOS также учитывает скорость своего автомобиля-носителя и вычитает его из скоростей окружающих объектов. 4D-радар научили измерять скорость движения объектов к автомобилю и от него. За счет внедрения ИИ система обучается без ручной разметки обучающего массива данных, постепенно «привыкая» отличать радарные шумы от реального движения и повышать точность своей работы.

«Наша система определяет движение объектов вокруг автомобиля и разделяет их на движущиеся и статичные, а также делает это в любых погодных условиях. Это как если бы беспилотник получил шестое чувство. Это не просто научная статья, алгоритм уже сегодня готов к работе на серийных радарах, которые в 50 раз дешевле лидаров», — описал итоги научной работы Степан Андреев, директор Научно-технического центра телекоммуникаций МФТИ.

Чтобы проверить способность RadarSFEMOS избегать фантомных торможений и иных реакций на несуществующие объекты, системы испытали на стандартных наборах данных View-of-Delft (VoD) и TJ4DRadSet. Число таких срабатываний упало в несколько раз, а точность определения положения объектов выросла до 89%.

Нашли опечатку? Выделите фрагмент и нажмите Ctrl + Enter.
Подписывайтесь на нас в Telegram, Яндекс.Новостях и VK
Сегодня, 15:35
Губкинский университет

Исследования ученых РГУ нефти и газа имени И. М. Губкина подтвердили, что технология производства авиационного топлива SAF из растительных лигноцеллюлозных отходов позволит снизить выбросы углекислого газа на 75% по сравнению с нефтяным керосином.

Сегодня, 11:17
Юлия Тарасова

Результаты эксперимента в США в будущем могут позволить добиться разрешения на использование отработанной конопли в качестве кормовой добавки в животноводстве.

Сегодня, 08:01
Адель Романова

На стыке трех литосферных плит у Красного моря заметили необычный вулканический процесс: где-то магма поднимается равномерным потоком, где-то — по частям. По мнению геологов, такой «пульс» вызван тем, что в некоторых местах магма с большим трудом пытается пробиться на поверхность.

28 июня, 18:58
Игорь Байдов

За последние 30 лет размер трески, обитающей в Балтийском море, значительно уменьшился. Если раньше рыбаки вылавливали из воды особей размером с маленького ребенка, то теперь добытая рыба легко помещается в ладонях. Авторы нового исследования винят в этом человека, который заставил один из видов эволюционировать в «карликов».

27 июня, 09:47
Авдей Палиш

Снимки с фотоловушек давно стали культурным явлением. Особенно забавными выглядят медведи. Мы с удовольствием смотрим на зверей, попавших в объектив камер в национальных парках: тигр украл фотоловушку, муравьед проехал верхом на муравьеде и так далее. Но не все животные настолько обаятельные. Ученые из США решили развить эмпатию к гремучим змеям, которых многие боятся. Для этого специалисты запустили трансляцию из «мегалогова», где рептилии отдыхают и рожают потомство.

29 июня, 17:23
Людмила Соколова

Чтобы понять, как часто за пределами Солнечной системы встречаются миры, похожие на Землю, ученые из Калифорнийского университета (США) провели статистический анализ 517 экзопланет. Результаты показали, что всего три мира, включая наш, соответствуют критериям потенциальной обитаемости. Наиболее перспективными из них оказались Kepler-22b и Kepler-538b.

25 июня, 15:19
ФизТех

Группа российских ученых из Института прикладной математики имени М. В. Келдыша РАН и МФТИ провела детальное численное исследование источников шума, генерируемых крылом прототипа сверхзвукового бизнес-джета в режиме посадки. Эта работа, сочетающая передовые методы вычислительной гидродинамики и аэроакустики, впервые позволила с высокой точностью локализовать и охарактеризовать основные зоны шумообразования вблизи полноразмерной геометрии крыла модели прототипа сверхзвукового пассажирского самолета в посадочной конфигурации.

5 июня, 13:20
Александр Березин

Вид антилоп, с ледникового периода привыкший к массовым миграциям, пытается вернуться в свой исторический ареал, когда-то достигавший Днепра. Однако их нетипичные для травоядных привычки вызывают сильнейшее отторжение у сельских жителей, предлагающих массово уничтожать их с воздуха. С экологической точки зрения возвращение этих животных весьма желательно, но как примирить их с фермерами — неясно.

19 июня, 13:42
ЮФУ

В ЮФУ придумали новый остроумный способ тестировать ИИ на способность работать в реальных ситуациях использования русского языка. Исследователи искусственного интеллекта из МИИ ИМ ЮФУ предлагают использовать интеллектуальные языковые игры, как пример — заставлять ИИ отвечать на вопросы из архива телевикторины «Что? Где? Когда?» и «Своей игры». Инициативу прокомментировал опытный игрок.

[miniorange_social_login]

Комментарии

1 Комментарий
Точность в 89% - сама по себе просто отличная цифра! Но вот для автомобильных автопилотов всё равно не достаточная, тут надо как минимум 99,9999%
Подтвердить?
Подтвердить?
Причина отклонения
Подтвердить?
Не получилось опубликовать!

Вы попытались написать запрещенную фразу или вас забанили за частые нарушения.

Понятно
Жалоба отправлена

Мы обязательно проверим комментарий и
при необходимости примем меры.

Спасибо
Аккаунт заблокирован!

Из-за нарушений правил сайта на ваш аккаунт были наложены ограничения. Если это ошибка, напишите нам.

Понятно
Что-то пошло не так!

Наши фильтры обнаружили в ваших действиях признаки накрутки. Отдохните немного и вернитесь к нам позже.

Понятно
Лучшие материалы
Закрыть
Войти
Регистрируясь, вы соглашаетесь с правилами использования сайта и даете согласие на обработку персональных данных.
Ваша заявка получена

Мы скоро изучим заявку и свяжемся с Вами по указанной почте в случае положительного исхода. Спасибо за интерес к проекту.

Понятно