Уведомления
Авторизуйтесь или зарегистрируйтесь, чтобы оценивать материалы, создавать записи и писать комментарии.
Авторизуясь, вы соглашаетесь с правилами пользования сайтом и даете согласие на обработку персональных данных.
В МФТИ разработали эффективную систему радарной ориентации для беспилотных автомобилей
RadarSFEMOS определила расположение и движение объектов с большой точностью в дождь, снег и туман. До сих пор беспилотные машины тяжело справляются с вождением в таких условиях, и без решения этой проблемы их массовое применение проблематично. Новую технологию со временем планируют внедрить на отечественных фурах и такси.
Сегодня в мире есть два подхода к беспилотным авто — Tesla и всех остальных. Первый полагается на вождение исключительно по данным камер: нейросеть для этого обучается на вождении обычных людей, которые, как известно, смотрят на дорогу только в видимом диапазоне. Альтернативный подход опирается на дополнительные сенсорные системы. Чаще всего это лидары, дающие подробную 3D-картину дорожной обстановки.
Однако это решение весьма проблематично. Дело не только в том, что набор лидаров все еще стоит как бюджетное авто, но и в качественных недостатках. В частности, в туман и снег видимость для них падает примерно до нулевой. Человек все еще может что-то разобрать на дороге, а беспилотное авто с лидаром в таких условиях встанет. Другая сложность: поскольку люди-водители лишены лидаров, обучать нейросети использованию лидарных данных сложно, выборки малы, отчего часты галлюцинации. Так называют ситуации, когда нейросеть видит на дороге то, чего там нет, и предпринимает, например, фантомное торможение, то есть тормозит на пустой дороге, рискуя тем, что в машину под ее управлением въедут сзади.
Некоторые научные группы считают радары более разумной альтернативой. В отличие от лидаров, радарное излучение дает картинку и в непогоду, водяные капли относительно слабо поглощают радиоволны. Но поскольку их длина больше, чем у лидарного излучения, то данные от них меньшего разрешения, более разреженные. Кроме того, сигналы радаров в реальных дорожных условиях сталкиваются со множеством шумов, артефактов и нулем радиозаметной разметки на дорожном полотне. А без нее сложно обучать нейросети, способные управлять машиной, опираясь на радар. ПО для таких систем намного сложнее в разработке, чем, собственно, «железо».
Поэтому ученые из МФТИ разработали новую самообучающуюся систему обработки данных 4D-радаров RadarSFEMOS. Статью об этом опубликовали в журнале IEEE Robotics and Automation Letters. От предшественников система отличается более эффективным шумоподавлением, а также повышенной способностью определять направление и скорость движения объектов в окружающей среде. Это важно, поскольку в норме для радиолокации тем сложнее заметить движущийся объект, чем ближе его скорость к самой машине, на которой установлен радар Определение направления при этом происходит без специальной разметки.

Для этого RadarSFEMOS применила диффузионную модель шумоподавления, очищающую радарные данные от шумов за миллисекунды. Чтобы идентифицировать предметы, окружающие радар, система применила трансформерный анализатор с адаптивной архитектурой. Это позволило различать объекты при всего 5-10 точках отражения радарных волн на квадратный метр проекции окружающих объектов. Лидарные системы на сегодня способны сделать это как минимум при сотне точек на квадратный метр.
Алгоритмы RadarSFEMOS также учитывает скорость своего автомобиля-носителя и вычитает его из скоростей окружающих объектов. 4D-радар научили измерять скорость движения объектов к автомобилю и от него. За счет внедрения ИИ система обучается без ручной разметки обучающего массива данных, постепенно «привыкая» отличать радарные шумы от реального движения и повышать точность своей работы.
«Наша система определяет движение объектов вокруг автомобиля и разделяет их на движущиеся и статичные, а также делает это в любых погодных условиях. Это как если бы беспилотник получил шестое чувство. Это не просто научная статья, алгоритм уже сегодня готов к работе на серийных радарах, которые в 50 раз дешевле лидаров», — описал итоги научной работы Степан Андреев, директор Научно-технического центра телекоммуникаций МФТИ.
Чтобы проверить способность RadarSFEMOS избегать фантомных торможений и иных реакций на несуществующие объекты, системы испытали на стандартных наборах данных View-of-Delft (VoD) и TJ4DRadSet. Число таких срабатываний упало в несколько раз, а точность определения положения объектов выросла до 89%.
После открытия объекта 3I/ATLAS предполагалось, что ядро межзвездной кометы могло иметь гигантские размеры. Но в процессе дальнейших наблюдений выяснилось, что эти оценки были явно завышены. Недавние расчеты показали, что на самом деле 3I/ATLAS по размерам соответствует среднестатистическим или даже самым компактным кометам Солнечной системы.
В 16.18 по московскому времени 28 декабря 2025 года с единственного гражданского космодрома на территории России произошел 17-й по счету космический запуск этого года. Перед ним на космодроме побывал корреспондент нашего издания, и вскоре мы выпустим репортаж о том, чем живет самый холодный космодром в мире.
Вокруг звезды HD 131488, расположенной в созвездии Центавра (Centaurus) на расстоянии около 152 световых лет от Земли, впервые зафиксировали следы монооксида углерода (CO), который образуется при столкновениях и испарении комет. Находка открывает новую страницу в изучении формирования планетных систем.
Биологи опровергли представление о примитивности органов чувств у древнейших бесчелюстных, обнаружив у миксин огромный арсенал рецепторов для поиска добычи. Исследователи доказали, что способность различать сложные запахи и аминокислоты появилась у общего предка позвоночных задолго до возникновения челюстей.
После открытия объекта 3I/ATLAS предполагалось, что ядро межзвездной кометы могло иметь гигантские размеры. Но в процессе дальнейших наблюдений выяснилось, что эти оценки были явно завышены. Недавние расчеты показали, что на самом деле 3I/ATLAS по размерам соответствует среднестатистическим или даже самым компактным кометам Солнечной системы.
В 16.18 по московскому времени 28 декабря 2025 года с единственного гражданского космодрома на территории России произошел 17-й по счету космический запуск этого года. Перед ним на космодроме побывал корреспондент нашего издания, и вскоре мы выпустим репортаж о том, чем живет самый холодный космодром в мире.
С 2010-х в «Роскосмосе» говорили: будущая РОС сможет пролетать над полюсом, что даст ей возможности для новых научных экспериментов. Но вскоре после того, как в ноябре 2025 года Россия временно лишилась возможности запускать людей в космос, эта позиция изменилась. В результате запускать космонавтов с космодромов нашей страны станет довольно сложно.
На скалистых берегах аргентинской Патагонии разворачивается настоящая драма. Магеллановы пингвины, долгое время чувствовавшие себя в безопасности на суше в своих многотысячных колониях, столкнулись с новым и беспощадным врагом. Их извечные морские страхи — касатки и морские леопарды — теперь блекнут перед угрозой, пришедшей из глубины материка. Виновник переполоха — грациозный и мощный хищник, недавно вернувшийся на эти земли после долгого изгнания.
Среди самых интригующих открытий космического телескопа «Джеймс Уэбб» — компактные объекты, получившие название «маленькие красные точки». Их видели только в самых дальних уголках Вселенной. Большинство возникло в первый миллиард лет после Большого взрыва, и ученые предполагали, что такие источники представляют собой небольшие компактные галактики. Однако международная команда астрономов пришла к иному выводу. Они предположили, что на самом деле «маленькие красные точки» — черные дыры, окруженные массивной газовой оболочкой.
Вы попытались написать запрещенную фразу или вас забанили за частые нарушения.
Понятно
Из-за нарушений правил сайта на ваш аккаунт были наложены ограничения. Если это ошибка, напишите нам.
Понятно
Наши фильтры обнаружили в ваших действиях признаки накрутки. Отдохните немного и вернитесь к нам позже.
Понятно
Мы скоро изучим заявку и свяжемся с Вами по указанной почте в случае положительного исхода. Спасибо за интерес к проекту.
Понятно
Последние комментарии