Самый большой научпоп канал
Подписаться
  • Добавить в закладки
  • Facebook
  • Twitter
  • Telegram
  • VK
  • Печать
  • Email
  • Скопировать ссылку
21 мая
Редакция Naked Science
1
171

В МФТИ разработали эффективную систему радарной ориентации для беспилотных автомобилей

4.7

RadarSFEMOS определила расположение и движение объектов с большой точностью в дождь, снег и туман. До сих пор беспилотные машины тяжело справляются с вождением в таких условиях, и без решения этой проблемы их массовое применение проблематично. Новую технологию со временем планируют внедрить на отечественных фурах и такси.

Снег, туман и дождь до сих пор очень непростая среда для беспилотных авто. Авторы новой научной работы пытаются смягчить эту ситуацию / © AI Image Generator

Сегодня в мире есть два подхода к беспилотным авто — Tesla и всех остальных. Первый полагается на вождение исключительно по данным камер: нейросеть для этого обучается на вождении обычных людей, которые, как известно, смотрят на дорогу только в видимом диапазоне. Альтернативный подход опирается на дополнительные сенсорные системы. Чаще всего это лидары, дающие подробную 3D-картину дорожной обстановки.

Однако это решение весьма проблематично. Дело не только в том, что набор лидаров все еще стоит как бюджетное авто, но и в качественных недостатках. В частности, в туман и снег видимость для них падает примерно до нулевой. Человек все еще может что-то разобрать на дороге, а беспилотное авто с лидаром в таких условиях встанет. Другая сложность: поскольку люди-водители лишены лидаров, обучать нейросети использованию лидарных данных сложно, выборки малы, отчего часты галлюцинации. Так называют ситуации, когда нейросеть видит на дороге то, чего там нет, и предпринимает, например, фантомное торможение, то есть тормозит на пустой дороге, рискуя тем, что в машину под ее управлением въедут сзади.

Некоторые научные группы считают радары более разумной альтернативой. В отличие от лидаров, радарное излучение дает картинку и в непогоду, водяные капли относительно слабо поглощают радиоволны. Но поскольку их длина больше, чем у лидарного излучения, то данные от них меньшего разрешения, более разреженные. Кроме того, сигналы радаров в реальных дорожных условиях сталкиваются со множеством шумов, артефактов и нулем радиозаметной разметки на дорожном полотне. А без нее сложно обучать нейросети, способные управлять машиной, опираясь на радар. ПО для таких систем намного сложнее в разработке, чем, собственно, «железо».

Поэтому ученые из МФТИ разработали новую самообучающуюся систему обработки данных 4D-радаров RadarSFEMOS. Статью об этом опубликовали в журнале IEEE Robotics and Automation Letters. От предшественников система отличается более эффективным шумоподавлением, а также повышенной способностью определять направление и скорость движения объектов в окружающей среде. Это важно, поскольку в норме для радиолокации тем сложнее заметить движущийся объект, чем ближе его скорость к самой машине, на которой установлен радар Определение направления при этом происходит без специальной разметки.

Общая схема работы новой системы алгоритмов / © Yufei Liu et al.

Для этого RadarSFEMOS применила диффузионную модель шумоподавления, очищающую радарные данные от шумов за миллисекунды. Чтобы идентифицировать предметы, окружающие радар, система применила трансформерный анализатор с адаптивной архитектурой. Это позволило различать объекты при всего 5-10 точках отражения радарных волн на квадратный метр проекции окружающих объектов. Лидарные системы на сегодня способны сделать это как минимум при сотне точек на квадратный метр.

Алгоритмы RadarSFEMOS также учитывает скорость своего автомобиля-носителя и вычитает его из скоростей окружающих объектов. 4D-радар научили измерять скорость движения объектов к автомобилю и от него. За счет внедрения ИИ система обучается без ручной разметки обучающего массива данных, постепенно «привыкая» отличать радарные шумы от реального движения и повышать точность своей работы.

«Наша система определяет движение объектов вокруг автомобиля и разделяет их на движущиеся и статичные, а также делает это в любых погодных условиях. Это как если бы беспилотник получил шестое чувство. Это не просто научная статья, алгоритм уже сегодня готов к работе на серийных радарах, которые в 50 раз дешевле лидаров», — описал итоги научной работы Степан Андреев, директор Научно-технического центра телекоммуникаций МФТИ.

Чтобы проверить способность RadarSFEMOS избегать фантомных торможений и иных реакций на несуществующие объекты, системы испытали на стандартных наборах данных View-of-Delft (VoD) и TJ4DRadSet. Число таких срабатываний упало в несколько раз, а точность определения положения объектов выросла до 89%.

Нашли опечатку? Выделите фрагмент и нажмите Ctrl + Enter.
Подписывайтесь на нас в Telegram, Яндекс.Новостях и VK
Предстоящие мероприятия
16 июня
МАИ

Российские работодатели наряду с традиционными методами поиска сотрудников все чаще стали прибегать к автоматизированным инструментам, среди которых, в частности, ресурсы рекрутинга на базе искусственного интеллекта. Технологии действительно шагнули так далеко, что программы с большими языковыми моделями могут даже проводить собеседования — это экономит трудовые и временные ресурсы, обеспечивает удобство и объективность процесса. Но без проблем все же не обходится. Научный сотрудник института «Компьютерные науки и прикладная математика» МАИ Юрий Чайников рассказал о том, какие проблемы могут возникнуть при собеседовании с ИИ и смогут ли в будущем кандидаты отказаться от такого формата найма в пользу традиционного.

Позавчера, 13:46
ФизТех

Международная группа исследователей разработала методику, которая самостоятельно настраивает математическую модель магнитного взаимодействия. Новый алгоритм позволит более реалистично моделировать и проектировать материалы с требуемыми свойствами и предсказывать их свойства перед экспериментальной проверкой.

Позавчера, 12:09
ПНИПУ

17 июня отмечается День русского кваса — хлебного напитка, который варили в каждой семье, передавая рецепты из поколения в поколение. Эксперт Пермского Политеха, рассказал, как продукт из солода становится газированным и почему его вкус всегда разный, сколько витаминов в нем содержится, кому и с какими заболеваниями употреблять его противопоказано, какой вид полезен для людей с глютеновой непереносимостью, поможет ли он похудеть летом и почему магазинный хранится дольше домашнего.

Позавчера, 16:49
Адель Романенкова

Радиотелескопы уловили очень короткий сигнал, и по его характеристикам стало ясно, что он не может быть естественного происхождения. Астрономы пришли к выводу, что источник находился в околоземном пространстве — там, где уже более полувека летает «мертвый» аппарат NASA.

14 июня
Любовь Соковикова

Изучив поведение 69 видов птиц в разных областях Западных Гат (Индия), международная исследовательская группа наконец объяснила, почему территориальные и всеядные птицы чаще других поют по утрам.

Позавчера, 11:00
НИУ ВШЭ

Международная команда исследователей с участием ученых из НИУ ВШЭ экспериментально показала, что люди, страдающие биполярным расстройством, считают мир более нестабильным, чем он есть на самом деле, и из-за этого чаще принимают нерациональные решения. Ученые предполагают, что полученные результаты позволят в будущем разработать более точные методы диагностики и терапии биполярного аффективного расстройства.

Позавчера, 16:49
Адель Романенкова

Радиотелескопы уловили очень короткий сигнал, и по его характеристикам стало ясно, что он не может быть естественного происхождения. Астрономы пришли к выводу, что источник находился в околоземном пространстве — там, где уже более полувека летает «мертвый» аппарат NASA.

5 июня
Александр Березин

Вид антилоп, с ледникового периода привыкший к массовым миграциям, пытается вернуться в свой исторический ареал, когда-то достигавший Днепра. Однако их нетипичные для травоядных привычки вызывают сильнейшее отторжение у сельских жителей, предлагающих массово уничтожать их с воздуха. С экологической точки зрения возвращение этих животных весьма желательно, но как примирить их с фермерами — неясно.

22 мая
ПНИПУ

Недавно вышел второй сезон сериала «Одни из нас» (TheLastofUs), созданного по сюжету популярнейшей видеоигры. Ученые Пермского Политеха решили разобраться, насколько реален сценарий грибной пандемии, превращающей людей зомби? Чем живет кордицепс и как он «ищет» своих жертв, действительно ли паразит способен эволюционировать настолько, чтобы поражать человеческий организм и подчинять себе его волю, был бы у людей шанс выжить, какие грибы уже поселились в наших телах и выручит ли нас иммунитет, сформированный тысячелетиями.

[miniorange_social_login]

Комментарии

1 Комментарий
Модест Измайлов
4 недели назад
-
0
+
Точность в 89% - сама по себе просто отличная цифра! Но вот для автомобильных автопилотов всё равно не достаточная, тут надо как минимум 99,9999%
Подтвердить?
Подтвердить?
Причина отклонения
Подтвердить?
Не получилось опубликовать!

Вы попытались написать запрещенную фразу или вас забанили за частые нарушения.

Понятно
Жалоба отправлена

Мы обязательно проверим комментарий и
при необходимости примем меры.

Спасибо
Аккаунт заблокирован!

Из-за нарушений правил сайта на ваш аккаунт были наложены ограничения. Если это ошибка, напишите нам.

Понятно
Что-то пошло не так!

Наши фильтры обнаружили в ваших действиях признаки накрутки. Отдохните немного и вернитесь к нам позже.

Понятно
Лучшие материалы
Закрыть
Войти
Регистрируясь, вы соглашаетесь с правилами использования сайта и даете согласие на обработку персональных данных.
Ваша заявка получена

Мы скоро изучим заявку и свяжемся с Вами по указанной почте в случае положительного исхода. Спасибо за интерес к проекту.

Понятно