• Добавить в закладки
  • Facebook
  • Twitter
  • Telegram
  • VK
  • Печать
  • Email
  • Скопировать ссылку
29.10.2024, 10:46
Evgenia Vavilova
2
34 533

Физики проследили фазовый переход магии в квантовой системе

❋ 5.9

То, насколько классический компьютер сможет воссоздать определенное квантовое состояние, описывается свойством под названием «магия». Ученые из США выяснили, существует ли резкий переход между состоянием «можем обойтись обычным компьютером» и «подойдет только квантовый».

Квантовый компьютер, на котором проводились эксперименты. / © IonQ
Квантовый компьютер, на котором проводились эксперименты. / © IonQ

Стабилизаторные состояния — класс квантовых состояний, поддающийся эффективному моделированию на классических компьютерах. Свойство «магии» в квантовой механике — характеристика квантовых состояний, описывающая степень их отклонения от стабилизаторных состояний. 

Магия делает квантовые состояния трудными для моделирования, но в то же время необходима для реализации универсальных и устойчивых к ошибкам квантовых вычислений. Понимание отвечающих за это свойств механизмов значительно улучшит характеристики квантовых компьютеров.

Авторы нового исследования ранее опубликовали статью, в которой показали существование фазового перехода в запутанности системы. Они выявили, что в зависимости от частоты измерений фазовое состояние квантовой системы может сохранять или разрушать запутанность. 

«Суперпозиции и запутанности оказывается недостаточно, чтобы сделать квантовые компьютеры более мощными, чем классические. Чтобы достичь преимущества, необходим еще один компонент — магия, или отклонение от стабилизаторного состояния. Если в квантовой системе нет магии, ее можно смоделировать на классическом компьютере, но это делает квантовый компьютер избыточным. Лишь при наличии значительного количества магии можно превзойти возможности классического компьютера», — объяснил Прадип Нироула (Pradeep Niroula), первый автор новой научной работы.

Квантовый вентиль, родственник логического вентиля в классических компьютерах, воздействует на кубиты и стремится создавать запутанность между ними, тогда как измерение одного из этих кубитов разрушает ее. Если добавить в квантовую схему несколько вентилей, можно проводить измерения в случайных местах и контролировать распределение запутанности в системе.

Ученые знают, что при малом количестве измерений вся квантовая система оказывается запутанной. Напротив, при слишком частых измерениях запутанность подавляется. Если же постепенно увеличивать частоту измерений, запутанность резко совершает фазовый переход от высокой к почти нулевой.

На этот раз ученые исследовали, существует ли фазовый переход в магии. Им удалось показать, что код, предназначенный для защиты квантовой информации от ошибок, с точки зрения магии демонстрирует явный фазовый переход из состояния «есть магия» в состояние «нет магии» без промежуточных этапов. Исследование опубликовано в журнале Nature Physics.

Вид на квантовый компьютер сбоку / © IonQ

Измерения также уничтожают магию, но для ее контролируемого добавления в систему необходимо выполнять малые изменения состояния кубитов. Изменения квантового состояния кубита называют поворотом, потому что оно теоретически описывается в трехмерной системе координат.

Физики использовали схему управления магией в случайном стабилизаторном коде через когерентные ошибки. Такие ошибки предсказуемы, постоянны и являются последствием эволюции квантовых состояний. 

В эксперименте измерения в некоторых случаях уничтожали магию, возвращая состояния к стабилизаторным, а иногда оставляли магию неизменной. Конкурирующими силами в квантовых компьютерах оказались «количество измерений» и «угол вращения кубитов».

Ученые обнаружили, что при фиксированной скорости проведения измерений можно изменить угол вращения и перейти из фазы с высокой концентрацией магии в фазу без нее вообще. Авторы научной работы провели серию численных симуляций и показали, что фазовый переход магии действительно происходит, а затем проверили эту гипотезу экспериментально, используя реальные квантовые схемы. Эксперименты подтвердили симуляции.

«Мы наблюдали признак фазового перехода даже на фоне шума в системе. Наша работа открывает фазовый переход в магии. В прошлых исследованиях уже были обнаружены другие переходы в запутанности и зарядах, что поднимает вопрос: могут ли и другие ресурсы демонстрировать аналогичные переходы? Относятся ли они к какому-то универсальному типу переходов? Можем ли мы применить это знание для создания устойчивых к помехам квантовых компьютеров?» — отметил Неурула.

Наличие перехода может указывать на существование более общей теории, применимой к разным квантовым свойствам.

Нашли опечатку? Выделите фрагмент и нажмите Ctrl + Enter.
Евгения Вавилова — научпоп автор, специализирующийся на популярной физике. Выпускница физического факультета, более 10 лет пишет о новейших открытиях в квантовой механике, астрофизике и теоретической физике. Евгения умеет объяснять сложные концепции простым языком и регулярно публикует материалы, основанные на первоисточниках — научных статьях и интервью с исследователями.
Подписывайтесь на нас в Telegram, Яндекс.Новостях и VK
Предстоящие мероприятия
15 сентября, 10:36
Игорь Байдов

Самая большая планета в Солнечной системе, всегда поражавшая воображение своими колоссальными размерами, немного сдала позиции. Новые высокоточные измерения орбитального зонда NASA показали, что Юпитер не такой большой и круглый, как считали астрономы последние 40 лет.

16 сентября, 13:21
Адель Романова

Во время недавних наблюдений карликовой планеты Квавар что-то неожиданно почти полностью закрыло ее собой. Астрономы уверены, что это не ее спутник Вейвот и не одно из двух известных колец этого маленького мира на краю Солнечной системы.

15 сентября, 11:30
РНФ

Ученые обнаружили, что общепринятые константы, с помощью которых химики предсказывают свойства молекул, содержали ошибки. Исправленные значения констант теперь объясняют ранее непонятные химические аномалии и позволяют предсказывать свойства новых материалов для квантовых технологий, датчиков и умных покрытий.

12 сентября, 14:03
ТюмГУ

Исследования самодержавия могут пролить свет на феномен, исконно свойственный российской государственности, а значит, переосмыслить исторический путь России и выработку новых направлений развития, к такому выводу пришел ученый ТюмГУ.

15 сентября, 10:36
Игорь Байдов

Самая большая планета в Солнечной системе, всегда поражавшая воображение своими колоссальными размерами, немного сдала позиции. Новые высокоточные измерения орбитального зонда NASA показали, что Юпитер не такой большой и круглый, как считали астрономы последние 40 лет.

15 сентября, 11:30
РНФ

Ученые обнаружили, что общепринятые константы, с помощью которых химики предсказывают свойства молекул, содержали ошибки. Исправленные значения констант теперь объясняют ранее непонятные химические аномалии и позволяют предсказывать свойства новых материалов для квантовых технологий, датчиков и умных покрытий.

12 сентября, 14:03
ТюмГУ

Исследования самодержавия могут пролить свет на феномен, исконно свойственный российской государственности, а значит, переосмыслить исторический путь России и выработку новых направлений развития, к такому выводу пришел ученый ТюмГУ.

9 сентября, 11:03
Адель Романова

Третий известный межзвездный объект 3I/ATLAS летит примерно вдвое быстрее обоих своих предшественников. По расчетам, его вряд ли могло выбросить из родной планетной системы с подобной скоростью, и так разогнаться по пути он тоже не мог.

11 сентября, 12:04
ПНИПУ

Все больше покупателей начинают отказываться от привычки делать покупки на маркетплейсах, а число новых продавцов на площадках практически не увеличилось. Аналитика показывает, что за первый квартал 2025 года — прирост селлеров составил всего 0,45% по сравнению с аналогичным периодом прошлого года. В то же время, маркетплейсы активно расширяют сеть пунктов выдачи, особенно в регионах, где физическое присутствие всех брендов невозможно. Ученые Пермского Политеха рассказали, почему люди стали реже совершать покупки на маркетплейсах.

[miniorange_social_login]

Комментарии

2 Комментария
А кому это в жизни пригодится?
-
0
+
Пошёл собирать осколки мозга
Подтвердить?
Подтвердить?
Причина отклонения
Подтвердить?
Не получилось опубликовать!

Вы попытались написать запрещенную фразу или вас забанили за частые нарушения.

Понятно
Жалоба отправлена

Мы обязательно проверим комментарий и
при необходимости примем меры.

Спасибо
Аккаунт заблокирован!

Из-за нарушений правил сайта на ваш аккаунт были наложены ограничения. Если это ошибка, напишите нам.

Понятно
Что-то пошло не так!

Наши фильтры обнаружили в ваших действиях признаки накрутки. Отдохните немного и вернитесь к нам позже.

Понятно
Лучшие материалы
Закрыть
Войти
Регистрируясь, вы соглашаетесь с правилами использования сайта и даете согласие на обработку персональных данных.
Ваша заявка получена

Мы скоро изучим заявку и свяжемся с Вами по указанной почте в случае положительного исхода. Спасибо за интерес к проекту.

Понятно