Уведомления
Авторизуйтесь или зарегистрируйтесь, чтобы оценивать материалы, создавать записи и писать комментарии.
Авторизуясь, вы соглашаетесь с правилами пользования сайтом и даете согласие на обработку персональных данных.
Пластиковая сила
Из обычной рыболовной лески ученые сплели самые сильные из существующих искусственных мышц.
Захватывающие воображение технологии и решения, о которых мы вам рассказываем, в большинстве своем требуют столь же инновационных материалов. Графен и хитрые композиты, углеволокно и органические проводники – все они настолько же интересны, насколько и дороги. Но вот ультрасовременная новинка, представленная недавно командой ученых из США, Австралии и Китая, сделана из обычной пластиковой лески.
В последние годы всевозможные искусственные мускулы из самых разных сложных материалов находят все большее применение в протезировании, создании экзоскелетов и робототехнике. При этом под ними могут понимать весьма широкий спектр систем различного устройства – главное, чтобы искусственный мускул мог сокращаться и растягиваться, либо скручиваться в ответ на определенное воздействие, будь то электрическая стимуляция, изменение температуры или что-то еще. И, конечно, чтобы после снятия этого воздействия «мускул» возвращал себе исходную форму и состояние, приготовляясь к следующему сокращению.
Достичь этого можно, например, используя материалы, обладающие памятью формы – скажем, некоторые никелево-титановые сплавы. Однако стоимость такого сплава исчисляется тысячами долларов за килограмм. Более мощные искусственные мускулы можно получить с использованием волокна из сверхпрочных углеродных нанотрубок, но цена их производства оказывается вообще заоблачной.
Такой работой с нанотрубками занимался и американский химик Рэй Богман (Ray Baughman). Он, в частности, заметил, что если эти трубки закрутить достаточно сильно, так, чтобы они скрутились в спираль, из них – как из резинового жгута в детской игрушке – получится отличный вращательный моторчик. С той лишь разницей, что запустить его в действие можно слабым электрическим током.
Размышляя над механизмом работы такого «нанотрубочного» двигателя, Богман и его коллеги заметили, что для его работы исключительно важна одинаковая ориентация нанотрубок. Тогда все они под действием тока меняют форму одинаковым образом, и вся система работает согласованно, сокращая или растягивая «мышцу». Но такое же упорядоченное расположение полимерных волокон характерно и для многих обычных пластмасс, скажем, нейлона (капрона). Попробовав такие – широко распространенные и крайне дешевые – капроновые полимеры в качестве основы для искусственных мышц, авторы были поражены.
Сокращение оксида
Одним из перспективных материалов для создания искусственных мышц стал диоксид ванадия. Американские ученые из группы профессора Цзиньсяо Ву (Junqiao Wu) обратили внимание на то, что структура этого вещества при температуре 67 oС претерпевает фазовый переход. В одной из фаз она позволяет свободно течь носителям заряда – электронам – делая материал проводником, в другой – блокирует их поток, превращая его в изолятор. Этот переход сопровождается и деформацией оксида ванадия.
Испытания в лаборатории показали, что ванадиевая «мышца» способна сокращаться с частотой до 200 КГц – до 200 тыс. колебаний в секунду! При этом ученые провели более миллиона таких циклов, не заметив никакой деградации материала. Увы, искусственные мышцы на основе этого материала, если и будут созданы, то снова окажутся слишком дорогими для по-настоящему массового промышленного использования.
Взяв нейлоновое волокно и скрутив из него жгут особой структуры, они обнаружили, что под воздействием тепла он сокращается почти вдвое, а при остывании возвращается к исходной длине. Для сравнения, наши собственные мускулы способны сокращаться лишь на 20%. Кстати, силу эта искусственная мышца демонстрирует просто нечеловеческую.
Сокращение наших мускулов обеспечивает взаимодействие белков – актина и миозина. Когда в цитоплазме мышечной клетки повышается содержание ионов кальция, толстые миозиновые нити начинают скользить вдоль тонких актиновых, сокращая длину белкового комплекса
©meduniver.com
Эксперименты показали, что сплетенное таким образом полиэтиленовое волокно диаметром порядка сотен микрометров – в десять раз тоньше человеческого волоса – способно поднять груз весом 7,2 кг! А сплетенная вместе в единую сокращающуюся структуру сотня таких волокон подняла уже 725 кг. И это – из материала, стоящего буквально копейки. «Они просто взяли дешевую вещь с полки и превратили ее в золотую жилу», – отреагировали на новинку восхищенные коллеги.
Скорее всего, это первое полноценное использование принципиально нового истребителя по его прямому назначению.
Овес посевной (Avena sativa) входит в число наиболее важных зерновых культур и возделывается человеком уже более трех тысяч лет. Теперь в истории овса настала новая веха: ученые завершили работу над полной последовательностью генома этого растения и разобрались с его непростым эволюционным прошлым.
Археологи открыли древнее государство с помощью лидара.
Скорее всего, это первое полноценное использование принципиально нового истребителя по его прямому назначению.
Группа ученых из России и Германии математически описала ситуацию, когда происходит самоостановка света — явление, при котором скорость световых импульсов падает в миллионы раз, вплоть до нуля. Оказалось, что в определенных условиях излучение в резонансно поглощающей среде создает для себя «потенциальную яму», из которой затем не может выйти. Это происходит за счет обволакивания материей безмассовых фотонов, и в результате они могут остановиться.
Ученые предупреждают: поскольку вес современных комбайнов и прочей сельхозтехники сегодня приближается к весу самых крупных животных, когда-либо бродивших по Земле, возникает парадокс уплотнения грунта.
С помощью GPS-трекинга ученые проследили за перемещениями целой популяции домашних кошек в небольшом норвежском городке. Оказалось, питомцы редко уходят от дома далее 50 метров и почти не совершают длительных прогулок.
Авторы нового исследования составили таблицу ожидаемой продолжительностью жизни для собак 18 чистокровных пород и метисов. Кроме того, они узнали, кто живет дольше — суки или кобели, кастрированные или нет.
Приходилось ли вам готовиться к тяжелым экзаменам в школе? А в институте? Или корпеть над срочным рабочим отчетом, который нужно сдать уже «вчера»? Конечно же, приходилось. В такие моменты хочется немного «завести» мозги, заставить их работать на всю катушку. И сосед или знакомый говорят вам: «А про ноотропы приходилось слышать? А вот фенотропил принимали? Это может помочь». Naked Science решил разобраться, что это такое, как оно помогает и помогает ли вообще.
Вы попытались написать запрещенную фразу или вас забанили за частые нарушения.
ПонятноИз-за нарушений правил сайта на ваш аккаунт были наложены ограничения. Если это ошибка, напишите нам.
ПонятноНаши фильтры обнаружили в ваших действиях признаки накрутки. Отдохните немного и вернитесь к нам позже.
ПонятноМы скоро изучим заявку и свяжемся с Вами по указанной почте в случае положительного исхода. Спасибо за интерес к проекту.
ПонятноМы скоро прочитаем его и свяжемся с Вами по указанной почте. Спасибо за интерес к проекту.
Понятно
Комментарии