Уведомления
Авторизуйтесь или зарегистрируйтесь, чтобы оценивать материалы, создавать записи и писать комментарии.
Авторизуясь, вы соглашаетесь с правилами пользования сайтом и даете согласие на обработку персональных данных.
Жидкий литий избавил ионы в пучке от лишних электронов
Новый метод отделения электронов позволил поднять мощность пучка ионов, предназначенного для синтеза изотопов с необычными соотношениями чисел протонов и нейтронов.
В стабильных изотопах количество нейтронов обычно варьируется в пределах нескольких штук, а у радиоактивных оно может изменяться в гораздо более широких пределах. К примеру, у стабильных изотопов никеля бывает от 30 до 36 нейтронов, а у радиоактивных — от 20 до 52. Если расположить все известные изотопы на карте, по осям которой отложены количества протонов и нейтронов, получится узкий «хребет стабильности» и широкие «отмели» радиоактивных изотопов.
Число возможных радиоактивных изотопов может составлять около шести тысяч, и пока ученые синтезировали лишь около половины из них. Изучение нестабильных изотопов с большим дисбалансом протонов и нейтронов представляет большой интерес — исследуя особенности их распада, физики шаг за шагом совершенствуют описание сил, удерживающих ядра воедино.
Изучать такие изотопы приходится буквально «на лету» — период их полураспада обычно составляет от десятых до тысячных долей секунды (но бывает и намного меньше). В 2022 году к этой работе приступила лаборатория FRIB (Facility for Rare Isotope Beams) университета штата Мичиган (Michigan State University).
Процесс получения нестабильных изотопов в лаборатории FRIB реализован следующим образом. Сначала из тяжелого элемента, такого, как ксенон или уран, получают ионы, которые разгоняют и направляют в отделитель электронов (charge stripper). В нем ионы лишаются почти всех электронов и направляются в основной ускоритель, а оттуда пучок ионов попадает в мишень.
Сталкиваясь с ядрами мишени на скорости до половины световой, ядра пучка «разлетаются» на крупные фрагменты, которые сортируют магнитным полем и направляют в ловушку, окруженную детекторами распада. По энергиям и типам испущенных частиц ученые восстанавливают структуру ядра.
Сложность поджидала разработчиков новой установки на этапе отделения электронов, которое необходимо для повышения заряда ионов и эффективности их разгона перед мишенью. При столкновениях образуются ядра с самым разнообразным содержанием протонов и нейтронов, но многие изотопы при этом образуются слишком редко. Чтобы повысить темп их образования, нужно поднимать ток пучка ионов, а отделитель электронов этого не выдерживает.
В менее мощных ускорителях отделитель электронов состоит из графитовой фольги, но пролетая через нее, ионы разрушают кристаллическую структуру графита. Оказалось, что в пучке FRIB графит выгорает слишком быстро.
Исследователи во главе с Такудзи Канемурой (Takuji Kanemura) изобрели самовосстанавливающийся отделитель электронов, который обошел ограничение по мощности пучка. Для этого они использовали мощный поток расплавленного лития. Выбор именно этого металла связан с двумя факторами — легкие атомы лития не способны сильно рассеять летящий сквозь него пучок тяжелых ионов, а высокая температура его кипения предотвращает нарушение вакуума, который необходим для поддержания пучка.
В жидкометаллическом отделителе электронов струя расплавленного лития выходит из сопла и ударяется о край дефлектора, который превращает ее в пленку толщиной 10 — 20 микрометров, летящую со скоростью до 180 километров в час. Пучок проходит через эту пленку, но каждый объем расплава подвергается его действию лишь на очень короткое время, и не успевает нагреться и вскипеть. С помощью литиевого отделителя исследователи смогли поднять мощность пучка до 400 киловатт.
Похожее решение используется в сверхъярких рентгеновских трубках. Их анод представляет собой струю металлического галлия, способную выдержать сфокусированный электронный луч такой мощности, которая испарила бы даже самые тугоплавкие материалы.
Применение редких радиоактивных изотопов не ограничивается изучением ядерных сил. В установке FRIB образуется огромное количество изотопов — в том числе использующихся в ядерной медицине и других областях, — и ученые планируют собирать их для дальнейшего применения.
Кроме того, этот способ получения радиоактивных ядер может пригодиться при достижении «острова стабильности» на карте изотопов, который содержит сверхтяжелые элементы с интереснейшими химическими свойствами. К настоящему моменту ученые достигли только нестабильного нейтронно-недостаточного края этого «острова». В его центре могут отыскаться изотопы с периодами полураспада в миллионы лет, но продвинуться вглубь не дает проблема нейтронной недостаточности.
Обычно сверхтяжелые элементы синтезируют, бомбардируя трансурановую мишень легкими ядрами, и все достаточно устойчивые изотопы, из которых можно заранее приготовить «снаряды» и мишени, содержат слишком малые доли нейтронов. Нестабильные ядра могут содержать гораздо больше нейтронов: если удастся синтезировать их в достаточном количестве «на лету» и тут же отправлять в мишень, проблема нейтронного недостатка может оказаться преодоленной.
К неожиданным прорывам в науке могут привести даже пустяковые вещи вроде чаинок в чашке. Парадокс чайного листа только на первый взгляд кажется неважным, но в свое время им заинтересовался Альберт Эйнштейн. Решение парадокса ученый представил на одной из конференций, чем вызвал ажиотаж у академической публики. Докладу немецкого физика уже почти 100 лет, а самому парадоксу — гораздо больше, но исследователи во всем мире продолжают использовать его в своих работах. Например, недавно китайские ученые применили его для изучения концентрации веществ в наножидкостях.
Измеряя активность медиальной части префронтальной коры участников эксперимента, ученые выяснили, что для одиночек почти не существовало разницы между настоящими друзьями и любимыми вымышленными героями.
Кому не доводилось слышать наставлений получше мыть за ушами и между пальцами ног? Ученые проверили эту житейскую мудрость и подтвердили, что совет действительно верный.
Космический телескоп «Гайя» позволил оценить скорость движения рекордного количества звезд в Млечном Пути, и новые данные оказались крайне неожиданными. Дело не только в том, что его масса упала во много раз: стало ясно, что сама структура Галактики не такая, как думали раньше.
Ученые применили современные методы, такие как микрокомпьютерная томография, получили сотни рентгеновских изображений и создали 3D-модель. Все для того, чтобы обнаружить следы опухоли во внутренней части черепа человека, жившего в середине IV века нашей эры. Это самый ранний случай менингиомы на Пиренейском полуострове — из тех, что известны науке.
К неожиданным прорывам в науке могут привести даже пустяковые вещи вроде чаинок в чашке. Парадокс чайного листа только на первый взгляд кажется неважным, но в свое время им заинтересовался Альберт Эйнштейн. Решение парадокса ученый представил на одной из конференций, чем вызвал ажиотаж у академической публики. Докладу немецкого физика уже почти 100 лет, а самому парадоксу — гораздо больше, но исследователи во всем мире продолжают использовать его в своих работах. Например, недавно китайские ученые применили его для изучения концентрации веществ в наножидкостях.
Космический телескоп «Гайя» позволил оценить скорость движения рекордного количества звезд в Млечном Пути, и новые данные оказались крайне неожиданными. Дело не только в том, что его масса упала во много раз: стало ясно, что сама структура Галактики не такая, как думали раньше.
Американский поэт и литературный критик Адам Кирш в эссе, опубликованном в The Guardian, рассуждает о том, как новые представления о возможностях животного разума меняют нас самих.
Исследователи из Швеции и Великобритания узнали, что «правило деревьев» да Винчи, который считал, что толщина всех веток дерева на любой его высоте, сложенная вместе, равна толщине ствола, ошибочно на микроуровне.
Вы попытались написать запрещенную фразу или вас забанили за частые нарушения.
ПонятноИз-за нарушений правил сайта на ваш аккаунт были наложены ограничения. Если это ошибка, напишите нам.
ПонятноНаши фильтры обнаружили в ваших действиях признаки накрутки. Отдохните немного и вернитесь к нам позже.
ПонятноМы скоро изучим заявку и свяжемся с Вами по указанной почте в случае положительного исхода. Спасибо за интерес к проекту.
ПонятноМы скоро прочитаем его и свяжемся с Вами по указанной почте. Спасибо за интерес к проекту.
Понятно
Комментарии