Уведомления
Авторизуйтесь или зарегистрируйтесь, чтобы оценивать материалы, создавать записи и писать комментарии.
Авторизуясь, вы соглашаетесь с правилами пользования сайтом и даете согласие на обработку персональных данных.
Физики разработали метод для точной съемки магнитных наноструктур
Ученые разработали новый метод визуализации магнитных наноструктур. Он обеспечивает разрешение около 70 нанометров, в то время как обычные оптические микроскопы достигают разрешения около 500 нанометров.
Разрешение обычных оптических микроскопов ограничено длиной волны света, из-за чего объекты размером менее 500 нанометров остаются неразличимыми.
Методика, разработанная учеными из Университета Мартина Лютера в Галле-Виттенберге (MLU) и Института физики микроструктур общества Макса Планка, Германия, преодолевает это ограничение. Физики использовали аномальный эффект Нернста (anomalous Nernst effect, ANE) и специальный наноразмерный металлический наконечник зонда микроскопа чтобы добиться высокого разрешения.
Аномальный эффект Нернста генерирует электрическое напряжение в магнитном материале, перпендикулярное магнетизации и градиенту температуры в образце. Исследователи решили, что это можно использовать.
Ученым пришлось создать одновременно нагрев как можно более маленького участка образца и электромагнитное поле в той же области. В этих условиях ANE генерирует напряжение, а уже его ученые измерили и, сопоставив все данные об исследуемой области, сформировали изображения.
«Мы смогли сфокусировать луч лазера на наконечнике кантилевера атомно-силового микроскопа, и таким образом создали температурный градиент на поверхности образца, ограниченный нанометровой областью. Металлический наконечник стал работать как антенна, фокусируя электромагнитное поле в крошечной области под своим кончиком», — объясняет профессор Георг Вольтерсдорф (Georg Woltersdorf).
Эта методика позволяет проводить измерения ANE с гораздо более высоким разрешением, чем это возможно при использовании традиционной оптической микроскопии. Исследовательская группа продемонстрировала изображения, полученные с помощью нового метода, с разрешением около 70 нанометров.
Предыдущие исследования изучали только магнитную поляризацию в плоскости образца. Однако, по словам исследовательской группы, температурный градиент в плоскости также имеет решающее значение и позволяет исследовать внеплоскостную поляризацию с помощью измерений ANE. Чтобы закрыть этот пробел и продемонстрировать надежность метода ANE для визуализации магнитных структур в нанометровом масштабе, исследователи использовали магнитную вихревую структуру.
Магнитный вихрь представляет собой конфигурацию магнитных моментов в материале, при которой направления намагниченности закручиваются вокруг центральной точки, формируя вихревое распределение.
Важное преимущество новой техники — ее можно использовать с хиральными антиферромагнитными материалами. Это особый класс магнитных материалов, у которых магнитные моменты атомов упорядочены антипараллельно, как в обычных антиферромагнетиках, но дополнительно проявляется хиральность — закрученность или асимметрия в их магнитной структуре. Хиральные антиферромагнетики активно изучаются для применения в спинтронике, квантовой электронике и сенсорике, поэтому ученым важно видеть объекты из этих материалов в деталях.
Работа опубликована в журнале ACS Nano.
Со временем одни воспоминания заменяются другими, но почему люди запоминают именно то, что запоминают? На этот вопрос ответили ученые из США, проанализировав более 100 исследований эпизодической памяти.
Одни из самых ярких объектов во Вселенной — квазары — представляют собой активные ядра галактик, питаемые центральными сверхмассивными черными дырами. Электромагнитное излучение, испускаемое этими объектами, позволяет астрономам изучать структуру Вселенной на ранних этапах ее развития, однако мощный радиоджет, исходящий от недавно обнаруженного экстремально яркого квазара J1601+3102, ставит под сомнение существующие представления о «космической заре».
О том, как совмещать успешную работу в физике и литературе, об экситонах и фотонах, о жидком свете, поляритонике и о мировом лидерстве России в этой области мы поговорили с Алексеем Кавокиным, директором Международного центра теоретической физики имени А. А. Абрикосова (МФТИ), руководителем группы квантовой поляритоники Российского квантового центра, руководителем лаборатории оптики спина Санкт-Петербургского государственного университета.
Со временем одни воспоминания заменяются другими, но почему люди запоминают именно то, что запоминают? На этот вопрос ответили ученые из США, проанализировав более 100 исследований эпизодической памяти.
Одни из самых ярких объектов во Вселенной — квазары — представляют собой активные ядра галактик, питаемые центральными сверхмассивными черными дырами. Электромагнитное излучение, испускаемое этими объектами, позволяет астрономам изучать структуру Вселенной на ранних этапах ее развития, однако мощный радиоджет, исходящий от недавно обнаруженного экстремально яркого квазара J1601+3102, ставит под сомнение существующие представления о «космической заре».
О том, как совмещать успешную работу в физике и литературе, об экситонах и фотонах, о жидком свете, поляритонике и о мировом лидерстве России в этой области мы поговорили с Алексеем Кавокиным, директором Международного центра теоретической физики имени А. А. Абрикосова (МФТИ), руководителем группы квантовой поляритоники Российского квантового центра, руководителем лаборатории оптики спина Санкт-Петербургского государственного университета.
Международная коллаборация физиков под руководством ученых из Йельского университета в США представила самые убедительные на сегодня подтверждения существования нового типа сверхпроводящих материалов. Доказательство существования нематической фазы вещества — научный прорыв, открывающий путь к созданию сверхпроводимости совершенно новым способом.
Обсерватории постоянно улавливают «мигающие» радиосигналы из глубин Вселенной. Чаще всего их источниками оказываются нейтронные звезды, которые за это и назвали пульсарами. Но к недавно обнаруженному источнику GLEAM-X J0704-37 они, по мнению астрономов, отношения не имеют.
Многие одинокие люди считают, что окружающие не разделяют их взглядов. Психологи из США решили проверить, так ли это на самом деле, и обнаружили общую особенность у людей с недостаточным количеством социальных связей.
Вы попытались написать запрещенную фразу или вас забанили за частые нарушения.
ПонятноИз-за нарушений правил сайта на ваш аккаунт были наложены ограничения. Если это ошибка, напишите нам.
ПонятноНаши фильтры обнаружили в ваших действиях признаки накрутки. Отдохните немного и вернитесь к нам позже.
ПонятноМы скоро изучим заявку и свяжемся с Вами по указанной почте в случае положительного исхода. Спасибо за интерес к проекту.
ПонятноМы скоро прочитаем его и свяжемся с Вами по указанной почте. Спасибо за интерес к проекту.
Понятно
Комментарии