Уведомления
Авторизуйтесь или зарегистрируйтесь, чтобы оценивать материалы, создавать записи и писать комментарии.
Авторизуясь, вы соглашаетесь с правилами пользования сайтом и даете согласие на обработку персональных данных.
Искусственный интеллект распознал жизнь с точностью в 90 процентов
Метод поиска жизни, разработанный американскими учеными, назвали «святым Граалем астробиологии». Авторы новой работы уверены, что он может с высокой точностью различать биологические и небиологические материалы в образцах, найденных на других планетах, а также обнаруживать следы древних живых организмов на Земле.
Поиск внеземной жизни — одна из главнейших целей астробиологии. С самого зарождения этой научной дисциплины (в XX веке, а сам термин появился на свет благодаря советскому астроному Гавриилу Тихову, который в 1953 году выпустил книгу под названием «Астробиология») ученые пытаются найти ответы на важнейшие вопросы: уникальны ли мы, или, может быть, во Вселенной есть другие разумные существа? А если мы одни и братьев по разуму нет, то, может быть, на других планетах можно найти простейшие формы жизни?
Чтобы ответить на них, исследователи ищут в космосе определенные биосигнатуры. Если речь, например, о микроорганизмах, то это химические биомаркеры — молекулы, которые могут производить бактерии или другие простейшие существа. Ищут такие маркеры:
— с помощью спектрометров, установленных на современных телескопах: ученые выявляют в атмосферах планет химические элементы, связанные с жизнью;
— специальными датчиками, которые стоят на борту космических аппаратов.
Однако органические молекулы непостоянны, под действием химических реакций они могут распадаться на атомы, что затрудняет их поиск.
В последнее время ученые разрабатывают новые методы поиска следов жизни, в которых важную роль играет искусственный интеллект. По словам специалистов, эти методы могут работать гораздо эффективнее, чем инструменты-анализаторы на борту орбитальных станций. Алгоритмы ИИ позволяют обнаруживать тонкие различия в молекулярных механизмах живой и неживой природы — даже в образцах возрастом сотни миллионов лет.
Группа американских ученых из Института Карнеги представила новый алгоритм машинного обучения, который может с высокой точностью установить, относится исследуемый образец к биотической среде (к живым существам либо их деятельности) или к абиотической (неживой природе, физическому и химическому окружению живых организмов). Результаты работы представили в журнале PNAS.
«Наш метод основан на предположении, что в молекулах живой природы сохраняется информация о химических процессах, которые их породили, а в молекулах неживой — не сохраняется. Вероятно, это характерно и для инопланетной жизни. Мы думаем, что на любой планете жизнь для своего поддержания будет производить гораздо больше различных соединений, чем абиотическая среда, и именно эти различия может обнаружить и оценить наш алгоритм», — объяснил Роберт Хейзен, один из авторов исследования.
Ученые взяли образцы из живой и неживой природы: клетки организмов, окаменелости, органические соединения и смеси, синтезированные в лаборатории, различного рода химические вещества, части богатых углеродом метеоритов. Их проанализировали с помощью масс-спектрометрии и пиролитической газовой хроматографии. Всего задействовали 134 образца, из которых 59 были из биотической среды и 75 из абиотической. Данные, которые ученые получили в результате исследования, затем использовали для обучения алгоритма.
Когда обучение завершилось, специалисты проверили алгоритм на деле. Он успешно определил образцы из живой природы (ракушки, человеческий волос, зубы, кости, клетки организмов), а также выявил изменившиеся остатки древних живых существ в окаменелостях, каменном угле, нефти, янтаре. Кроме того, алгоритм выделил образцы из неживой природы — например, части метеоритов. Точность составила почти 90 процентов.
Ученые отметили, что в будущем их алгоритм машинного обучения можно будет использовать в датчиках нового поколения на спускаемых аппаратах, луноходах и марсоходах. Также его можно будет применять в поисках жизни на потенциально обитаемых мирах, таких как Энцелад и Европа.
В ближайшее время команда исследователей задействует свою разработку для изучения горных пород возрастом 3,5 миллиарда лет в регионе Пилбара в Западной Австралии, где, как считается, находятся самые древние в мире окаменелости. Их открыли в 1993 году, и ученые полагают, что эти окаменелости содержат остатки бактериальных матов (родственные цианобактериям), которые были первыми живыми организмами, производящими кислород на нашей планете.
Если в этих породах действительно находятся остатки бактериальных матов, значит, на Земле благоприятные условия для процветания жизни сложились гораздо раньше, чем считается в научном сообществе.
Американские ученые проанализировали данные о поедании фекалий животными, чтобы выяснить, какие причины стоят за этим поведением и какие закономерности можно проследить. В результате они разделили всю выборку более чем из 150 видов на семь категорий по тому, что заставляет зверей питаться таким сомнительным продуктом.
Несмотря на отмену попытки «экономичной» ловли первой ступени, шестой испытательный полет Starship был успешным. Корабль — вторая ступень системы впервые продемонстрировала возможность маневра на орбите. Первая ступень после приводнения неожиданно для всех смогла пережить два взрыва, не утратив плавучесть. Среди наблюдавших за испытанием был Дональд Трамп.
Международная команда специалистов во главе с сотрудниками Центра математического моделирования в разработке лекарств Первого МГМУ имени И. М. Сеченова выявила наиболее перспективные направления для исследований в области лечения аутоиммунных заболеваний. Команда первой провела систематический обзор для поиска всех опубликованных в научных работах математических моделей аутоиммунных патологий и выявила недостаток моделей, которые могут значительно ускорить разработку новых лекарств.
Международная коллаборация физиков под руководством ученых из Йельского университета в США представила самые убедительные на сегодня подтверждения существования нового типа сверхпроводящих материалов. Доказательство существования нематической фазы вещества — научный прорыв, открывающий путь к созданию сверхпроводимости совершенно новым способом.
Принято считать, что естественный спутник Земли возник в результате ее столкновения с другой планетой, но к этой версии есть вопросы. Теперь ученые предложили рассмотреть сценарий возможного захвата Луны притяжением Земли из пролетавшей мимо двойной системы.
Ученые из Аргентины в серии экспериментов проследили за поведением домашних собак во время разногласий между членами семьи и выявили у четвероногих питомцев ряд характерных реакций на конфликт.
Под рыжим верхним слоем с виду обычного камня открылся целый калейдоскоп довольно неожиданных оттенков. Это особенно интересно с учетом того, где лежит камень — в марсианском кратере, который по всем признакам когда-то был озером.
Международная коллаборация физиков под руководством ученых из Йельского университета в США представила самые убедительные на сегодня подтверждения существования нового типа сверхпроводящих материалов. Доказательство существования нематической фазы вещества — научный прорыв, открывающий путь к созданию сверхпроводимости совершенно новым способом.
Органические молекулы с пи-связью образуют очень устойчивые геометрии, которые не любят нарушаться. В 1924 году немецкий химик Юлиус Бредт сформулировал соответствующий запрет, вошедший в учебники химии. Тем не менее это в некоторых случаях возможно. В новой работе американские исследователи представили несколько «антибредтовских» соединений из класса олефинов.
Вы попытались написать запрещенную фразу или вас забанили за частые нарушения.
ПонятноИз-за нарушений правил сайта на ваш аккаунт были наложены ограничения. Если это ошибка, напишите нам.
ПонятноНаши фильтры обнаружили в ваших действиях признаки накрутки. Отдохните немного и вернитесь к нам позже.
ПонятноМы скоро изучим заявку и свяжемся с Вами по указанной почте в случае положительного исхода. Спасибо за интерес к проекту.
ПонятноМы скоро прочитаем его и свяжемся с Вами по указанной почте. Спасибо за интерес к проекту.
Понятно
Комментарии