Уведомления
Авторизуйтесь или зарегистрируйтесь, чтобы оценивать материалы, создавать записи и писать комментарии.
Авторизуясь, вы соглашаетесь с правилами пользования сайтом и даете согласие на обработку персональных данных.
#нейросеть
Студенты Университета МИСИС и МФТИ совместно с учеными некоммерческой лаборатории исследований искусственного интеллекта T-Bank AI Research предложили новую ансамблевую нейросеть SDDE (Saliency Diversified Deep Ensembles), которая с большей точностью определяет объекты на изображениях, не загруженных в базы данных. В перспективе новый алгоритм поможет развить сферу беспилотных транспортных средств и медицинской диагностики, где важно различать неопознанные элементы и графические артефакты.
Российские исследователи впервые продемонстрировали возможность применения нейронной сети PointNext для проведения государственного мониторинга земель. Использование нейросети позволит автоматизировать рутинные процессы при земельном планировании и, таким образом, ускорить процесс согласования документов на право собственности.
Бурное развитие IT-технологий и особенно искусственного интеллекта привлекают внимание молодежи как перспективное поле деятельности для карьеры и самовыражения. О том, как найти свой путь в цифровой жизни и не потеряться на бескрайних просторах всемирной паутины, рассказал московский IT-евангелист, много лет проработавший в команде Microsoft, преподаватель НИУ ВШЭ и МАИ, автор телеграм-канала «Облачный адвокат», кандидат физико-математических наук Дмитрий Сошников.
Специалисты КБГУ разработали новую нейросетевую модель для диагностики инфаркта миокарда. При этом использовался простой математический метод автоматической классификации — алгоритм k-ближайших соседей, который не требует больших вычислительных ресурсов и доступа к платным облачным сервисам, что делает его установку доступной и недорогой. Сегодня на обслуживание одного пациента в поликлиниках уходит до 12 минут, а с помощью разработанной программы это время может сократиться почти вдвое.
Внутренний туризм в России активно развивается, но люди по-прежнему сталкиваются с проблемой поиска или неактуальности информации об интересных местах и событиях. В среднем приходится тратить от одного до трех часов, чтобы найти нужные данные, в том числе потому что они разбросаны по разным интернет-платформам. В ПНИПУ разрабатывают мобильное приложение с уникальными функциями для организации досуга и туристических поездок по нашей стране. Удобная и информативная программа сделает процесс выбора и планирования быстрым, простым и удобным.
Сотрудники Центра перспективных исследований в искусственном интеллекте РЭУ имени Г. В. Плеханова создали нейросеть для определения индекса счастья в университете. Команда центра провела несколько этапов вычисления индекса счастья. Сначала была предобучена модель MAE ViT (Masked Auto Encoder Vision Transformer) с собственными модификациями представления пространственной информации. Затем нейросеть обучили на задачах open-set распознавания лиц и определения эмоций человека.
В последние годы западные страны проводят активную санкционную политику против целого списка государств, в том числе и России. Под действия санкций попадают крупные объекты банковской сферы, предприятия добывающей отрасли и промышленного сектора, а также отдельные физические лица и компании. Такая ситуация требует от Правительства России не только быстрых ответных мер экономического регулирования, но и долгосрочного прогнозирования и анализа развития возможных событий. Ученые Пермского Политеха разработали интеллектуальную систему на основе нейросети для выявления отечественных компаний, которые в будущем подвержены риску попадания в санкционные списки. Программа полезна как для отдельных инвесторов и частных компаний, так и для государственных организаций и регулирующих органов.
Информационная безопасность отвечает за то, чтобы важные сведения компании, личные дела и корпоративные тайны не попали не в те руки. Эта отрасль защищает данные от утечек, а программы, системы и сети — от взлома, порчи файлов или других видов атак. В коммерческих и государственных структурах сведения также необходимо охранять от шпионов или возможных злоумышленников внутри самого коллектива. Существующие методы обнаружения нелегальных пользователей занимают много времени и не всегда эффективны. Улучшить работу информационной безопасности можно с помощью искусственного интеллекта, который за короткое время способен анализировать большое количество данных. Ученые ПНИПУ обучили нейросеть быстро и точно выявлять нелегальных пользователей в сети. Разработка обеспечит укрепление информационного суверенитета России.
Нейронные сети с каждым днем захватывают все больше различных сфер и автоматизируют множество процессов. Одно из популярных направлений — распознавание изображений. Его используют в медицинской диагностике, в автомобильной сфере для распознавания знаков на дороге, для навигации и визуального восприятия окружающей среды в робототехнике, для обнаружения инцидентов в системах видеонаблюдения. Требуется постоянная модификация и улучшение методов для снижения ошибок. Ученые ПНИПУ разработали подсистему машинного зрения, которая обеспечивает надежное распознавание мелких и разноудаленных от камеры объектов. Предложенная схема поможет, например, обнаружить оружие или опасные предметы в толпе.
Коррозия приводит ежегодно к миллиардным убыткам, «съедает» несколько процентов мирового ВВП, поэтому разработка ингибиторов коррозии — веществ, замедляющих или предотвращающих ее течение — остается в фокусе внимания многих научных групп. Особенно серьезную опасность для стали представляют кислые среды, в частности, нефть. В ближайшее время поиском идеальной молекулы, для защиты стали от коррозии займется нейросеть. Пока международные научные группы, в состав которых входят российские ученые из НИЯУ МИФИ, занимаются предварительными исследованиями, призванным и накопить информацию для нейросети.
Ученые Центра искусственного интеллекта и факультета компьютерных наук НИУ ВШЭ, а также Института искусственного интеллекта AIRI и Sber AI разработали новую структуру диффузионной модели, для которой возможно задать восемь видов распределения шума. Вместо классической структуры модели в виде цепи Маркова и применения нормального распределения ученые предложили звездообразную модель, где возможно выбирать тип распределения. Это поможет решать задачи в разных геометрических пространствах с помощью диффузионных моделей.
Вы попытались написать запрещенную фразу или вас забанили за частые нарушения.
ПонятноИз-за нарушений правил сайта на ваш аккаунт были наложены ограничения. Если это ошибка, напишите нам.
ПонятноНаши фильтры обнаружили в ваших действиях признаки накрутки. Отдохните немного и вернитесь к нам позже.
ПонятноМы скоро изучим заявку и свяжемся с Вами по указанной почте в случае положительного исхода. Спасибо за интерес к проекту.
ПонятноМы скоро прочитаем его и свяжемся с Вами по указанной почте. Спасибо за интерес к проекту.
Понятно
Последние комментарии