• Добавить в закладки
  • Facebook
  • Twitter
  • Telegram
  • VK
  • Печать
  • Email
  • Скопировать ссылку
27.01.2025, 11:26
ПНИПУ
172

Создана нейросетевая технология для оценки качества тренировок юных футболистов

❋ 4.6

С развитием методов компьютерного зрения появились новые возможности для анализа и улучшения качества подготовки юных спортсменов. Один из современных инструментов — технология трехмерной детекции, то есть определения в пространстве и времени положения ключевых точек человека. Она позволяет не только отслеживать движения, но и проводить глубокий анализ их техники, помогая тренерам и спортсменам выявлять слабые места, совершенствовать навыки и автоматизировать контроль качества выполнения упражнений. Ученые Пермского Политеха разработали прототип информационной системы поддержки тренерских решений, основанной на нейросетевой технологии. Это позволит оценивать тренировочный процесс футболистов с помощью интеллектуального анализа данных, получаемых с видеокамер.

Ученые Пермского Политеха разработали нейросетевую технологию для оценки качества тренировок юных футболистов / © Konstantin Evdokimov, Unsplash

Статья опубликована в журнале «Прикладная математика и вопросы управления». Исследование выполнено в рамках программы стратегического академического лидерства «Приоритет 2030» совместно со специалистами Академии игровых видов спорта Пермского края под руководством А. В. Степанова.

Определять движения спортсмена можно по положению его 2D-скелета и взаимодействию со спортивным инвентарем. Но этого не всегда достаточно, так как для некоторых упражнений необходимо знать нахождение ключевых точек относительно друг друга в пространстве. Более того, после видеосъемки потребуется синхронизировать по времени кадры с левой и правой камеры. При использовании нейронных сетей в 3D-пространстве необходимость в этом отпадает. В целом 3D-подход предлагает лучшую точность и глубину анализа по сравнению с двухмерными методами детектирования, поэтому он положен в основу компьютерной программы.

Ученые Пермского Политеха с помощью обученной нейросети разработали прототип информационной системы поддержки принятия решений, которая сможет определять, насколько качественно идет тренировка юных футболистов. Система позволяет отслеживать индивидуальную работу каждого спортсмена команды одновременно и автоматизировать контроль качества со стороны тренера.

«Всего программа фиксирует 34 ключевые точки человека, среди которых плечи, локти, кисти, пальцы на руках и ногах, тазобедренные суставы, колени и стопы. Видеокамеры устанавливаются на тренировочном поле, а программно-аппаратная система записывает упражнения в форме видеоряда и передает его на компьютер, где происходит выявление ошибок при выполнении упражнений с мячом и без. Это позволит тренерам и аналитикам проводить детальный анализ техники членов футбольной команды и разрабатывать стратегии совершенствования спортивного мастерства», – комментирует Александр Терехин, аспирант кафедры «Вычислительная математика, механика и биомеханика» ПНИПУ.

«Для проверки работы системы мы провели эксперименты на ряде упражнений, требующих анализа трехмерных изображений, например, наклонов. Задача нейросети – определить, насколько качество движений спортсмена соответствует заданным требованиям: не сгибать ноги в коленях, касаться пола пальцами обеих рук не более трех секунд и так далее.

Видеосъемка игрока осуществлялась справа, чтобы не было перекрытия одних частей тела другими, из-за чего нейронная сеть может не понять, как объединить в скелет отдельные ключевые точки. По предварительным результатам разработанная технология полностью справляется с выявлением ошибок в движениях игрока», – поясняет Валерий Столбов, заведующий кафедрой «Вычислительная математика, механика и биомеханика» ПНИПУ, доктор технических наук.

В дальнейшем планируется расширить количество анализируемых спортивных упражнений (не менее 40) и провести комплексные испытания в футбольном манеже в процессе реальной тренировки. Разработка ученых Пермского Политеха позволит повысить эффективность занятий и автоматизировать процесс обработки результатов тестирования юных футболистов за счет внедрения компьютерного зрения и методов искусственного интеллекта.

Нашли опечатку? Выделите фрагмент и нажмите Ctrl + Enter.
Пермский национальный исследовательский политехнический университет (национальный исследовательский, прошлые названия: Пермский политехнический институт, Пермский государственный технический университет) — технический ВУЗ Российской Федерации. Основан в 1960 году как Пермский политехнический институт (ППИ), в результате объединения Пермского горного института (организованного в 1953 году) с Вечерним машиностроительным институтом. В 1992 году ППИ в числе первых политехнических вузов России получил статус технического университета.
Подписывайтесь на нас в Telegram, Яндекс.Новостях и VK
Предстоящие мероприятия
17 февраля, 10:00
ФизТех

Ученые из Института космических исследований РАН и МФТИ раскрыли химический механизм, объясняющий появление молекул воды на поверхностях астероидов.

17 февраля, 15:30
МГППУ

Пластичность мозга — его способность перестраиваться под влиянием приходящей информации. Это свойство необходимо для обучения и адаптации. Пластичность особенно высока в детском и юношеском возрасте, она помогает быстро выучить иностранный язык и освоить сложные моторные навыки (например, фигурное катание). Ресурс пластичности есть и у пожилых людей — благодаря альтернативным нейронным сетям они восстанавливаются после травмы или инсульта. Как выясняется, высокая пластичность это не всегда хорошо. Нарушение тонкого баланса между пластичностью и стабильностью может вести к неприятным последствиям, таким как хроническая боль, тиннитус (звон в ушах) и фобии.

17 февраля, 09:30
СПбГУ

Исследователи Санкт-Петербургского государственного университета разработали эффективный способ обнаружения в крови важнейшего биомаркера иммунитета — неоптерина — с помощью нанотехнологий и лазера.

12 февраля, 07:52
Адель Романова

Астрономы недавно проанализировали базу данных о падающих на Землю объектах и пришли к выводу, что два из них прибыли из межзвездного пространства. Известна не только дата, но и место падения каждого из них.

12 февраля, 11:41
Александр Березин

На наземные растения, в основном деревья, приходится 80 процентов всей биомассы Земли, 450 миллиардов тонн сухого углерода и более двух триллионов тонн «живого веса». Поэтому идея сажать новые леса для связывания СО2 из атмосферы долго казалась логичной. Новые данные показали, что реальность заметно сложнее.

12 февраля, 08:19
Полина Меньшова

«Любить лишь можно только раз», — писал поэт Сергей Есенин, а герои культовых сериалов приходили к выводу, что «настоящая» влюбленность случается в жизни максимум дважды. Однако ни один из этих тезисов не подкреплен научными данными. Американские исследователи подошли к вопросу иначе: опросили более 10 тысяч человек и вывели среднее число сильных влюбленностей, возможных в течение жизни.

12 февраля, 07:52
Адель Романова

Астрономы недавно проанализировали базу данных о падающих на Землю объектах и пришли к выводу, что два из них прибыли из межзвездного пространства. Известна не только дата, но и место падения каждого из них.

28 января, 10:50
Игорь Байдов

Международная команда палеонтологов описала новый вид динозавра размером с крупную современную птицу. Он носил на голове плотный костяной нарост, который эти животные, возможно, использовали для внутривидовых разборок. Находка показывает, что даже мелкие хищники мелового периода могли решать конфликты не только когтями и зубами, но и ударами головой.

26 января, 14:26
Александр Березин

Образцы грунта, взятые астронавтами полвека назад, вложили еще один важный кирпич в здание научной картины мира: гипотеза о том, что Земля исходно была сухой, не стыкуется с фактами. Похоже, идею о невозможности сохранения большого количества воды на «теплых» планетах придется пересмотреть.

[miniorange_social_login]

Комментарии

Написать комментарий
Подтвердить?
Подтвердить?
Причина отклонения
Подтвердить?
Не получилось опубликовать!

Вы попытались написать запрещенную фразу или вас забанили за частые нарушения.

Понятно
Жалоба отправлена

Мы обязательно проверим комментарий и
при необходимости примем меры.

Спасибо
Аккаунт заблокирован!

Из-за нарушений правил сайта на ваш аккаунт были наложены ограничения. Если это ошибка, напишите нам.

Понятно
Что-то пошло не так!

Наши фильтры обнаружили в ваших действиях признаки накрутки. Отдохните немного и вернитесь к нам позже.

Понятно
Лучшие материалы
Закрыть
Войти
Регистрируясь, вы соглашаетесь с правилами использования сайта и даете согласие на обработку персональных данных.
Ваша заявка получена

Мы скоро изучим заявку и свяжемся с Вами по указанной почте в случае положительного исхода. Спасибо за интерес к проекту.

Понятно