Уведомления
Авторизуйтесь или зарегистрируйтесь, чтобы оценивать материалы, создавать записи и писать комментарии.
Авторизуясь, вы соглашаетесь с правилами пользования сайтом и даете согласие на обработку персональных данных.
Нейросеть научили быстро и точно менять режимы работы электродвигателя
Для работы лифтов, прессов, металлорежущих станков и других электроприводных систем используют двигатели постоянного тока. Они преобразуют поступающую электроэнергию в механическое вращение. При этом током, скоростью, положением и другими важными параметрами управляют специальные электронные регуляторы, которые поддерживают все переменные на нужном уровне, не допуская отклонений. Но случается так, что они не всегда обеспечивают необходимую точность и быстроту, что приводит к замедленному реагированию на изменение условий, рывкам, толчкам и нестабильной работе механизма. Поэтому широкое применение в подобных системах начинают находить нейросети. Ученые Пермского Политеха разработали эффективный подход к их обучению, который позволяет тонко настраивать регулятор и избегать возникновения ошибок.
Статья опубликована в журнале «Электротехника». Исследование выполнено в рамках программы стратегического академического лидерства «Приоритет 2030».
Лифты, прессы, металлорежущие станки и другие производственные механизмы приводятся в движение с помощью двигателя постоянного тока. Этими процессами управляет электронный регулятор. В случае неправильной настройки он может недостаточно быстро и точно реагировать на изменение условий функционирования механизма, из-за чего появляются задержки в работе, могут возникать рывки и толчки, что вызывает повышенный износ механических частей и подшипников.
Все это чревато недостаточно точной обработкой деталей на металлообрабатывающем станке, неравномерной подачей материалов на конвейере, некомфортным перемещением и даже опасностью для пассажиров в лифте. Для точного управления такими объектами возможно применение регуляторов, построенных на базе нейронной сети.
Тренировать нейросеть можно по-разному: с «учителем» и без. В первом случае ее учат просто «подражать» уже настроенному регулятору. Недостаток в том, что так она не сможет работать лучше своего прототипа. Во втором она самостоятельно анализирует загружаемые в нее входные данные и ищет в них закономерности. Здесь возникает другая сложность: непросто подобрать нужную выборку данных для обучения.
Ученые Пермского Политеха разработали оригинальный подход, когда нейросеть тренируется не на самом промышленном объекте, а на его «цифровом двойнике». Для этого специалисты предприятия совестно с учеными разрабатывают специальные имитационные модели, которые описывают процессы движения и взаимодействия разных частей механизма, в том числе двигателя и его элементов, с помощью математических уравнений. Это позволяет выполнить настройку регулятора, не нарушая условий работы реального производственного процесса.
Обучение всегда происходит по методу «проб» и (что важно) «ошибок»: на начальных этапах ИИ не знает, какое воздействие будет правильным, поэтому просто перебирает случайные параметры и пробует применить их к системе. Если они окажутся ошибочными, скорректирует их и попробует снова. Но в условиях реального производства нельзя позволить ей подобным образом экспериментировать и нарушать ход рабочего процесса, ведь это может привести к аварийным ситуациям. Поэтому использование модели – это способ более тонко обучить регулятор на большом количестве различных данных.
«В нашем подходе мы применяем «функцию потерь», которая оценивает расхождение между предсказаниями модели и фактическими значениями, которые собраны с существующего объекта. Это возможность более тонко «объяснить» нейросети, чего мы хотим от нее добиться. При этом, в отличие от традиционной работы нейрорегулятора, в нашей схеме эта функция не встроена в ИИ, она действует как «внешний наблюдатель», сравнивает прогноз сети с истиной и сообщает, насколько хорошо сеть справилась», – комментирует Дмитрий Даденков, доцент кафедры «Микропроцессорные средства автоматизации» ПНИПУ, кандидат технических наук.
Политехники протестировали процесс обучения на примере системы регулирования скорости в двигателе. Создали жесткие условия: нейросеть должна была регулировать скорость вращения, во-первых, когда она менялась резко и непредсказуемо, во-вторых, при изменяющейся нагрузке, то есть того необходимого сопротивления, которое двигатель должен преодолевать, чтобы вращаться.
«Подобные условия могут возникнуть на станках, конвейерах или в аварийных ситуациях, когда нужно резко переключить скоростной режим или вовсе остановить работу. Это требует от устройства быстрой реакции и точности движений. Тесты показали, что регулятор, обученный по нашей схеме, работает корректно: при изменении нагрузки скорость двигателя практически не проседает, а при необходимости задать другую скорость наблюдается незначительное перерегулирование – около одного процента. Для проверки работы нейрорегулятора в реальных условиях на измеренное состояние объекта накладывался «шум» – случайные некорректные данные. Регулятор, который обучался на модели без него, успешно справлялся с управлением скоростью и на зашумленном объекте», – рассказывает Игорь Шмидт, доцент кафедры «Микропроцессорные средства автоматизации» ПНИПУ, кандидат технических наук.
Применение таких регуляторов не ограничивается двигателями постоянного тока, их имеет смысл применять везде, где классические регуляторы справляются плохо: если объект управления является сложной нелинейной, многосвязной системой, или имеются дополнительные критерии качества управления.
Подход ученых Пермского Политеха предоставляет практически неограниченные возможности по тонкой настройке нейрорегулятора. Также при получении информации о факторах, которые могут привести к ошибке, нейросеть заранее предотвращает ее появление. Это позволяет эффективно управлять процессами в электроприводных системах лифтов, конвейеров, металлорежущих станков, прокатных станов и подъемно-транспортных машин.
За последние 30 лет размер трески, обитающей в Балтийском море, значительно уменьшился. Если раньше рыбаки вылавливали из воды особей размером с маленького ребенка, то теперь добытая рыба легко помещается в ладонях. Авторы нового исследования винят в этом человека, который заставил один из видов эволюционировать в «карликов».
Снимки с фотоловушек давно стали культурным явлением. Особенно забавными выглядят медведи. Мы с удовольствием смотрим на зверей, попавших в объектив камер в национальных парках: тигр украл фотоловушку, муравьед проехал верхом на муравьеде и так далее. Но не все животные настолько обаятельные. Ученые из США решили развить эмпатию к гремучим змеям, которых многие боятся. Для этого специалисты запустили трансляцию из «мегалогова», где рептилии отдыхают и рожают потомство.
До сих пор ученые считали, что величайшую из женщин — фараонов Египта после смерти подвергли «культурной отмене»: ее статуи разбивали, имя вычеркивали из надписей, обелиски засыпали песком. Цзюнь И Вон из Университета Торонто (Канада) подверг сомнению это утверждение, но и в его гипотезе остаются вопросы.
Группа российских ученых из Института прикладной математики имени М. В. Келдыша РАН и МФТИ провела детальное численное исследование источников шума, генерируемых крылом прототипа сверхзвукового бизнес-джета в режиме посадки. Эта работа, сочетающая передовые методы вычислительной гидродинамики и аэроакустики, впервые позволила с высокой точностью локализовать и охарактеризовать основные зоны шумообразования вблизи полноразмерной геометрии крыла модели прототипа сверхзвукового пассажирского самолета в посадочной конфигурации.
Состояние паралича, в которое впадают разные виды животных, хорошо известно и задокументировано. Обычно оно считается защитной реакцией в случае опасности, но никаких доказательств этому до сих пор нет. Особенно загадочным остается поведение обитателей океана, притворяющихся мертвыми. Ученые проверили существующие объяснения этого эффекта и сделали неожиданные выводы.
Квантовые спиновые жидкости (КСЖ) обещают ученым развитие в областях квантовых вычислений и передачи энергии без потерь. В них магнитные моменты частиц теоретически не должны упорядочиваться даже при охлаждении до абсолютного нуля температур.
Радиотелескопы уловили очень короткий сигнал, и по его характеристикам стало ясно, что он не может быть естественного происхождения. Астрономы пришли к выводу, что источник находился в околоземном пространстве — там, где уже более полувека летает «мертвый» аппарат NASA.
Группа российских ученых из Института прикладной математики имени М. В. Келдыша РАН и МФТИ провела детальное численное исследование источников шума, генерируемых крылом прототипа сверхзвукового бизнес-джета в режиме посадки. Эта работа, сочетающая передовые методы вычислительной гидродинамики и аэроакустики, впервые позволила с высокой точностью локализовать и охарактеризовать основные зоны шумообразования вблизи полноразмерной геометрии крыла модели прототипа сверхзвукового пассажирского самолета в посадочной конфигурации.
Вид антилоп, с ледникового периода привыкший к массовым миграциям, пытается вернуться в свой исторический ареал, когда-то достигавший Днепра. Однако их нетипичные для травоядных привычки вызывают сильнейшее отторжение у сельских жителей, предлагающих массово уничтожать их с воздуха. С экологической точки зрения возвращение этих животных весьма желательно, но как примирить их с фермерами — неясно.
Вы попытались написать запрещенную фразу или вас забанили за частые нарушения.
ПонятноИз-за нарушений правил сайта на ваш аккаунт были наложены ограничения. Если это ошибка, напишите нам.
ПонятноНаши фильтры обнаружили в ваших действиях признаки накрутки. Отдохните немного и вернитесь к нам позже.
ПонятноМы скоро изучим заявку и свяжемся с Вами по указанной почте в случае положительного исхода. Спасибо за интерес к проекту.
Понятно
Комментарии