Уведомления
Авторизуйтесь или зарегистрируйтесь, чтобы оценивать материалы, создавать записи и писать комментарии.
Авторизуясь, вы соглашаетесь с правилами пользования сайтом и даете согласие на обработку персональных данных.
#нейронные сети
Чжан Цзинвэй, аспирант ЮФУ, победитель федерального конкурса управленцев «Лидеры России», разработал упрощенную модель нейронных сетей для беспилотных летательных аппаратов, выполняющих задачу быстрого обнаружения небольших объектов в реальном времени. В сравнении с аналогами беспилотники на новом алгоритме показывают большую эффективность, точность, скорость и низкую энергозатратность.
Международная коллаборация с участием ученых факультета компьютерных наук НИУ ВШЭ предложила новый подход к проектированию детекторов для физики элементарных частиц с помощью дифференцируемого программирования и глубоких нейронных сетей. Он позволит оптимизировать производительность инструментов и повысит научную ценность результатов экспериментов.
Ученые из Института когнитивных нейронаук НИУ ВШЭ совместно с коллегами из Лондонского университета и Института когнитивных исследований человека и мозга имени Макса Планка изучили с помощью магнитоэнцефалографии работу головного мозга у людей с низким и высоким уровнями личностной тревожности во время решения вероятностных задач. Выяснилось, что в ситуации неопределенности между двумя группами испытуемых существуют различия в активности медиальной префронтальной, орбитофронтальной и передней поясной коры. У людей с высоким уровнем тревожности нейрональная активность оказалась выше, а эффективность в решении задач — ниже. Причина этого — в особенностях восприятия условий неопределенности.
Группа американских исследователей в области химической инженерии разработала самоуправляемую лабораторию, способную выявлять и оптимизировать сложные многоступенчатые пути реакций для синтеза как новых, так и уже известных материалов и молекул. Во время демонстрации концепции система под управлением нейронной сети нашла более эффективный способ производства высококачественных полупроводниковых нанокристаллов, которые используются в оптических и фотонных устройствах.
Пожалуй, самая популярная и перспективная задача нейросетей — технологии распознавания образов. Они либо по отдельности, либо в интегрированном виде используются в таких сферах, как безопасность и наблюдение, сканирование и создание изображений, маркетинг и реклама, дополненная реальность и поиск изображений. Обучение — очень важная часть создания этой технологии. Слишком маленькое или наоборот большое количество данных в нейросети приводит к некорректной работе. Порой даже оптимальный размер данных может привести к плохим результатам, если объекты, по которым обучалась программа будут захвачены с одного ракурса или находятся на одном фоне. Сегодня специалистам приходится определять границы изучаемых объектов вручную в специальных программах. Этот процесс очень длительный и трудоемкий. Ученые Пермского Политеха создали программу с генератором случайных синтетических изображений, которая позволит обучать нейросеть быстрее.
Технологии искусственного интеллекта проникают во все сферы жизни. Наука не исключение — ученые начинают использовать машинное обучение все активнее, и за ним уже есть реальные научные достижения. Но это лишь прелюдия: ИИ явился не просто помочь с расчетами, его роль в будущем масштабнее — он усилит наше мышление, указывая на взаимосвязи, которые человеческому уму не видны. Наука изменится. Naked Science полагает, что у нее появился новый способ изучать мир.
Подготовка нефти до товарного качества — процесс, который состоит из множества стадий. Важно обеспечивать оптимальные технологические параметры, чтобы повысить эффективность использования оборудования. Результат, к которому стремятся предприятия, — увеличение прибыли. Исследователи из Пермского Политеха усовершенствовали автоматизированное управление технологическим процессом подготовки «черного золота», чтобы снизить затраты на производство и улучшить качество готового продукта. Для этого они использовали алгоритм оптимизации на основе нейросетей и аналитических моделей.
Факультет цифровой экономики и массовых коммуникаций МТУСИ в составе международной коллаборации принял участие в разработке системы компьютерного зрения в интеллектуальной отраслевой робототехнике, позволяющей существенно повысить производительность агробизнеса. В частности, специалисты обучили нейронную сеть распознавать несобранные яблоки в садах.
В XXI веке вопрос о природе сознания станет одним из ключевых. Раньше им задавались лишь философы, а жизнь шла своим чередом, но технологии многое меняют: теперь мы создаем модели искусственного интеллекта, достаточно успешно притворяющиеся личностями. Нам нужны научные суждения о разуме, чувствах и сознании у машин, животных и людей, так как это влияет на систему прав и морали, на наши действия в их отношении и непосредственно на наше будущее. Naked Science разбирается, что мы знаем о природе сознания.
Исследование доцента Института нанотехнологий, электроники и приборостроения Южного федерального университета Вадима Авилова направлено на создание и развитие в России новых технологий проектирования и производства перспективной элементно-компонентной базы интегральной наноэлектроники и искусственного интеллекта.
Ученые Сколтеха разработали метод обучения алгоритмов компьютерного зрения, повышающий точность обработки данных при наличии ограниченных исходных выборок. Благодаря новому методу решение различных задач дистанционного зондирования станет проще не только для компьютеров, но в перспективе и для пользователей данных.
Международный коллектив ученых разработал алгоритм, который находит сужения кровеносных сосудов сердца на диагностических изображениях. В 94 процентах случаев модель верно определяет проблемные участки на картинке в реальном времени. Это поможет кардиологам автоматически выявлять зоны патологических изменений у пациентов с ишемической болезнью сердца во время коронарной ангиографии.
Вы попытались написать запрещенную фразу или вас забанили за частые нарушения.
ПонятноИз-за нарушений правил сайта на ваш аккаунт были наложены ограничения. Если это ошибка, напишите нам.
ПонятноНаши фильтры обнаружили в ваших действиях признаки накрутки. Отдохните немного и вернитесь к нам позже.
ПонятноМы скоро изучим заявку и свяжемся с Вами по указанной почте в случае положительного исхода. Спасибо за интерес к проекту.
ПонятноМы скоро прочитаем его и свяжемся с Вами по указанной почте. Спасибо за интерес к проекту.
Понятно
Последние комментарии