Уведомления
Авторизуйтесь или зарегистрируйтесь, чтобы оценивать материалы, создавать записи и писать комментарии.
Авторизуясь, вы соглашаетесь с правилами пользования сайтом и даете согласие на обработку персональных данных.
Нейросеть ускорит «гаражную амнистию»
Российские исследователи впервые продемонстрировали возможность применения нейронной сети PointNext для проведения государственного мониторинга земель. Использование нейросети позволит автоматизировать рутинные процессы при земельном планировании и, таким образом, ускорить процесс согласования документов на право собственности.
В статье, опубликованной в «Вестнике СГУГиТ», представлены наилучшие параметры для обучения модели с тем, чтобы обеспечить максимальную точность.
Для задач строительства, приватизации требуется регулярный мониторинг территорий. Ведут его, как правило, классическим методом. Сотрудники выезжают на место и проводят визуальный осмотр. Это отнимает много времени, сказывается нехватка персонала. Ученые из МФТИ и Кубанского государственного технологического университета предложили автоматизировать этот процесс.
Авторы работы приводят в пример реализацию закона о «гаражной амнистии» в Краснодаре. Согласно этого закона, граждане могут легализовать свой гараж и приобрести в собственность земельный участок под ним. Сейчас в работе департамента муниципальной собственности находится 7000 заявлений, люди ждут согласования документов от шести до 16 месяцев, в то время как регламент отводит на все месяц.
Ускорить процесс поможет съемка территории лазерным локатором (лидаром). Для распознавания объектов исследователи предложили использовать нейронную сеть PointNext, разработанную на основе PointNet++. Это программа с открытым кодом, написанная для работы с облаками точек лазерного отражения. Ее используют для сегментации, классификации и идентификации трехмерных объектов.
«Обычно нейросети используют для распознавания объектов на фото или видео, а PointNext работает с облаком точек лазерного отражения. Поэтому мы решили использовать ее», — пояснил Сергей Самарин, аспирант Физтех-школы радиотехники и компьютерных технологий МФТИ.
Лидар сканирует территорию лазерными импульсами, по времени их возвращения он определяет расстояние до объекта. В результате получается массив точек. Именно его и передают в нейросеть.
Но чтобы она выдала качественный результат, ее нужно обучить. Для этого используют эталонные наборы данных. В данном случае ученые воспользовались системой Terra_Maker, разработанной в Кубанском государственном университете. С ее помощью сгенерировали массив точек лазерного отражения участка размером 1000 на 1000 метров, где находится более 500 объектов недвижимости. Общее количество точек — более 4,7 миллионов. Все они были размечены на пять классов: земля, крыши зданий, низкая растительность, средняя растительность, высокая растительность.
Для оценки качества работы модели используют различные метрики, в первую очередь точность (accuracy), которая показывает долю верных ответов. Хорошая точность стремиться к 100 процентам (но не равна им). Чтобы получить максимальную точность, нужно правильно подобрать параметры работы нейросети. Именно эту задачу решали авторы исследования. Они перенастроили специально под нее PointNext и приступили к обучению.
Потребовалось 12 экспериментов, в результате которых определили оптимальное количество точек для одного обучаемого образца, размер сетки и количество эпох (когда через алгоритм проходит весь набор данных). В исследовании применяли функцию потерь CrossEntropy loss, оптимизатор Adam optimizer, экспоненциальное убывание скорости обучения (Step Decay).
Результата работы нейросети представлен в виде трехмерных графиков с точками, покрашенными определенным цветом. Крыша здания, к примеру, сиреневая, высокая растительность — красная.
Наиболее точный результат получили при 2500 точек в одном обучающем образце и сетке 25 метров. В процессе обучения выявили закономерность — чем меньше сторона сетки и меньше точек в облаке, тем выше точность. Если добавить в датасет информацию о цвете, то точность несколько снижается, но не существенно. В целом, чем меньше параметров, тем более эффективно предсказывает модели. Наилучшая точность, полученная в эксперименте — 0,9998. Такой результат, близкий к единице, говорит об идеальном наборе данных, с которыми работала нейросеть. С реальным датасетом, где есть искажения и шумы, точность будет ниже.
Следующим шагом ученые намерены задействовать воздушное лазерное сканирование на реальных объектах с последующей камеральной обработкой данных нейросетью.
«Вместо того, чтобы тратить целый день на обход земельных участков, мы запускаем беспилотник с лидаром, делаем съемку. Чистим данные от шумов и отправляем в нейросеть. Она сегментирует и классифицирует данные так, что мы понимаем, где на территории есть здания, например, гараж», — поделился планами Сергей Самарин.
Эта работа важна не только для реализации закона о «гаражной амнистии», но также для выявления незаконного строительства, контроля за нарушениями при строительстве, например, соблюдении этажности, отступов от границ земельных участков.
(опубликовано при поддержке гранта Минобрнауки России в рамках федерального проекта «Популяризация науки и технологий» № 075-15-2024-571)
Обитающий в полярных районах Северного полушария гренландский кит (Balaena mysticetus) живет более двух столетий и почти не болеет раком. Секрет его долголетия оказался скрыт в клетках соединительной ткани, ответственной за заживление ран: при пониженной температуре в них активируется особый белок, усиливающий восстановление поврежденной ДНК.
Ученые из МФТИ разработали и предложили новую систему единиц для электродинамики, способную примирить два главенствующих, но исторически несовместимых подхода. Эта компромиссная система, названная авторами физико-технической (ФТ), сохраняет практическое удобство Международной системы единиц (СИ), используемой инженерами по всему миру, и в то же время отражает теоретическую стройность и симметрию гауссовой системы (СГС), предпочитаемой физиками-теоретиками.
Международная группа ученых провела необычный эксперимент. Исследователи взяли образцы фекалий у детей с разными типами темперамента и пересадили их крысам. После этого животные начали вести себя по-разному: те, кто получил микробиоту от активных детей, стали смелее и больше исследовали новое пространство. Это открытие намекает на то, что бактерии, живущие в кишечнике с детства, в какой-то мере способны влиять на формирование личности.
Обитающий в полярных районах Северного полушария гренландский кит (Balaena mysticetus) живет более двух столетий и почти не болеет раком. Секрет его долголетия оказался скрыт в клетках соединительной ткани, ответственной за заживление ран: при пониженной температуре в них активируется особый белок, усиливающий восстановление поврежденной ДНК.
Владельцы домашних животных нередко «очеловечивают» их и окружают заботой так же, как маленьких детей. Кажется, что такое внимание должно помочь питомцам прожить долгую счастливую жизнь и уберечь их от болезней, однако ученые заметили противоположный эффект. Его в новой книге описала международная команда ветеринаров.
Ученые из МФТИ разработали и предложили новую систему единиц для электродинамики, способную примирить два главенствующих, но исторически несовместимых подхода. Эта компромиссная система, названная авторами физико-технической (ФТ), сохраняет практическое удобство Международной системы единиц (СИ), используемой инженерами по всему миру, и в то же время отражает теоретическую стройность и симметрию гауссовой системы (СГС), предпочитаемой физиками-теоретиками.
Проанализировав данные наблюдений, полученных с помощью наземных обсерваторий за последние два десятилетия, астрономы обнаружили потенциально обитаемый мир — суперземлю Gliese 251 c (GJ 251 с). Планета обращается вокруг красного карлика на расстоянии около 18 световых лет от Земли и считается одним из самых перспективных кандидатов для поисков жизни.
Согласно новой гипотезе, сознание возникает не только из-за активности нейронов, но и благодаря физическим процессам — электромагнитным полям от движения жидкости в мозге. Эта модель, как и ее предшественники, пока носит теоретический характер, но предлагает нестандартный взгляд на проблему синхронизации работы разных отделов мозга.
В современном доме, насыщенном разнообразной техникой, удлинители стали незаменимым атрибутом, позволяющим обеспечить электропитанием все необходимые устройства. Однако мало кто задумывается, что привычное использование этого аксессуара может нести серьезную угрозу безопасности. По статистике, значительная часть бытовых пожаров происходит из-за неправильной эксплуатации электропроводки и вспомогательных устройств. Какие приборы категорически нельзя подключать через удлинители и почему это может привести к трагическим последствиям, рассказывает профессор кафедры наноэлектроники РТУ МИРЭА, доктор физико-математических наук Алексей Юрасов.
Вы попытались написать запрещенную фразу или вас забанили за частые нарушения.
Понятно
Из-за нарушений правил сайта на ваш аккаунт были наложены ограничения. Если это ошибка, напишите нам.
Понятно
Наши фильтры обнаружили в ваших действиях признаки накрутки. Отдохните немного и вернитесь к нам позже.
Понятно
Мы скоро изучим заявку и свяжемся с Вами по указанной почте в случае положительного исхода. Спасибо за интерес к проекту.
Понятно
