Уведомления
Авторизуйтесь или зарегистрируйтесь, чтобы оценивать материалы, создавать записи и писать комментарии.
Авторизуясь, вы соглашаетесь с правилами пользования сайтом и даете согласие на обработку персональных данных.
Нейросеть ускорит «гаражную амнистию»
Российские исследователи впервые продемонстрировали возможность применения нейронной сети PointNext для проведения государственного мониторинга земель. Использование нейросети позволит автоматизировать рутинные процессы при земельном планировании и, таким образом, ускорить процесс согласования документов на право собственности.
В статье, опубликованной в «Вестнике СГУГиТ», представлены наилучшие параметры для обучения модели с тем, чтобы обеспечить максимальную точность.
Для задач строительства, приватизации требуется регулярный мониторинг территорий. Ведут его, как правило, классическим методом. Сотрудники выезжают на место и проводят визуальный осмотр. Это отнимает много времени, сказывается нехватка персонала. Ученые из МФТИ и Кубанского государственного технологического университета предложили автоматизировать этот процесс.
Авторы работы приводят в пример реализацию закона о «гаражной амнистии» в Краснодаре. Согласно этого закона, граждане могут легализовать свой гараж и приобрести в собственность земельный участок под ним. Сейчас в работе департамента муниципальной собственности находится 7000 заявлений, люди ждут согласования документов от шести до 16 месяцев, в то время как регламент отводит на все месяц.
Ускорить процесс поможет съемка территории лазерным локатором (лидаром). Для распознавания объектов исследователи предложили использовать нейронную сеть PointNext, разработанную на основе PointNet++. Это программа с открытым кодом, написанная для работы с облаками точек лазерного отражения. Ее используют для сегментации, классификации и идентификации трехмерных объектов.
«Обычно нейросети используют для распознавания объектов на фото или видео, а PointNext работает с облаком точек лазерного отражения. Поэтому мы решили использовать ее», — пояснил Сергей Самарин, аспирант Физтех-школы радиотехники и компьютерных технологий МФТИ.
Лидар сканирует территорию лазерными импульсами, по времени их возвращения он определяет расстояние до объекта. В результате получается массив точек. Именно его и передают в нейросеть.
Но чтобы она выдала качественный результат, ее нужно обучить. Для этого используют эталонные наборы данных. В данном случае ученые воспользовались системой Terra_Maker, разработанной в Кубанском государственном университете. С ее помощью сгенерировали массив точек лазерного отражения участка размером 1000 на 1000 метров, где находится более 500 объектов недвижимости. Общее количество точек — более 4,7 миллионов. Все они были размечены на пять классов: земля, крыши зданий, низкая растительность, средняя растительность, высокая растительность.
Для оценки качества работы модели используют различные метрики, в первую очередь точность (accuracy), которая показывает долю верных ответов. Хорошая точность стремиться к 100 процентам (но не равна им). Чтобы получить максимальную точность, нужно правильно подобрать параметры работы нейросети. Именно эту задачу решали авторы исследования. Они перенастроили специально под нее PointNext и приступили к обучению.
Потребовалось 12 экспериментов, в результате которых определили оптимальное количество точек для одного обучаемого образца, размер сетки и количество эпох (когда через алгоритм проходит весь набор данных). В исследовании применяли функцию потерь CrossEntropy loss, оптимизатор Adam optimizer, экспоненциальное убывание скорости обучения (Step Decay).
Результата работы нейросети представлен в виде трехмерных графиков с точками, покрашенными определенным цветом. Крыша здания, к примеру, сиреневая, высокая растительность — красная.
Наиболее точный результат получили при 2500 точек в одном обучающем образце и сетке 25 метров. В процессе обучения выявили закономерность — чем меньше сторона сетки и меньше точек в облаке, тем выше точность. Если добавить в датасет информацию о цвете, то точность несколько снижается, но не существенно. В целом, чем меньше параметров, тем более эффективно предсказывает модели. Наилучшая точность, полученная в эксперименте — 0,9998. Такой результат, близкий к единице, говорит об идеальном наборе данных, с которыми работала нейросеть. С реальным датасетом, где есть искажения и шумы, точность будет ниже.
Следующим шагом ученые намерены задействовать воздушное лазерное сканирование на реальных объектах с последующей камеральной обработкой данных нейросетью.
«Вместо того, чтобы тратить целый день на обход земельных участков, мы запускаем беспилотник с лидаром, делаем съемку. Чистим данные от шумов и отправляем в нейросеть. Она сегментирует и классифицирует данные так, что мы понимаем, где на территории есть здания, например, гараж», — поделился планами Сергей Самарин.
Эта работа важна не только для реализации закона о «гаражной амнистии», но также для выявления незаконного строительства, контроля за нарушениями при строительстве, например, соблюдении этажности, отступов от границ земельных участков.
(опубликовано при поддержке гранта Минобрнауки России в рамках федерального проекта «Популяризация науки и технологий» № 075-15-2024-571)
Благодаря последним находкам на севере Англии ученые больше узнали о повседневной жизни римского гарнизона, охранявшего один из фортов вала Адриана от набегов северных племен. Несмотря на репутацию людей с развитой санитарией, римляне Британии, вероятно, страдали от целого ряда заболеваний пищеварительной системы, вызванных паразитами.
Согласно научным данным, на Земле живут 20 квадриллионов муравьев, что составляет примерно 2,5 миллиона муравьев на каждого человека. Ученые давно спорят, почему эти насекомые стали одними из самых многочисленных существ по числу особей. Авторы нового исследования, похоже, нашли ключ к разгадке.
Международная группа ученых поставила под сомнение более ранние выводы о наличии у спутника Сатурна глобального подледного океана глубиной в сотни километров. Хотя их возражения звучат разумно, они создают загадку: почему столь многие ледяные луны Солнечной системы имеют подледный океан, а Титан — нет? Впрочем, авторы новой работы отметили, что это не мешает ему сохранить водоемы емкостью с Атлантический океан. Они просто будут не совсем обычно распределены.
Экологическое состояние морей, омывающих развитые и развивающиеся страны, — давняя проблема, о которой говорят ученые. Авторы нового исследования выявили в Средиземном море пещеры с рекордным количеством мусора.
Исследователи доказали, что влияние больших сделок на рынок описывается квадратичной зависимостью. Основой для анализа стали данные Токийской биржи.
Согласно научным данным, на Земле живут 20 квадриллионов муравьев, что составляет примерно 2,5 миллиона муравьев на каждого человека. Ученые давно спорят, почему эти насекомые стали одними из самых многочисленных существ по числу особей. Авторы нового исследования, похоже, нашли ключ к разгадке.
С 2010-х в «Роскосмосе» говорили: будущая РОС сможет пролетать над полюсом, что даст ей возможности для новых научных экспериментов. Но вскоре после того, как в ноябре 2025 года Россия временно лишилась возможности запускать людей в космос, эта позиция изменилась. В результате запускать космонавтов с космодромов нашей страны станет довольно сложно.
На скалистых берегах аргентинской Патагонии разворачивается настоящая драма. Магеллановы пингвины, долгое время чувствовавшие себя в безопасности на суше в своих многотысячных колониях, столкнулись с новым и беспощадным врагом. Их извечные морские страхи — касатки и морские леопарды — теперь блекнут перед угрозой, пришедшей из глубины материка. Виновник переполоха — грациозный и мощный хищник, недавно вернувшийся на эти земли после долгого изгнания.
Позавчера, 27 ноября 2025 года, при запуске космонавтов к МКС на стартовую площадку № 31 упала кабина обслуживания стартового комплекса. Это означает, что новые пуски оттуда до починки невозможны. К сожалению, в 2010-х годах, в рамках «оптимизации» расходов, резервную площадку (с которой летал Юрий Гагарин) упразднили. Поэтому случилось беспрецедентное: в XXI веке страна с пилотируемой космической программой осталась без средств запуска людей на орбиту. Пока ремонт не закончится, проблема сохранится. Чем это может грозить?
Вы попытались написать запрещенную фразу или вас забанили за частые нарушения.
Понятно
Из-за нарушений правил сайта на ваш аккаунт были наложены ограничения. Если это ошибка, напишите нам.
Понятно
Наши фильтры обнаружили в ваших действиях признаки накрутки. Отдохните немного и вернитесь к нам позже.
Понятно
Мы скоро изучим заявку и свяжемся с Вами по указанной почте в случае положительного исхода. Спасибо за интерес к проекту.
Понятно
