Уведомления
Авторизуйтесь или зарегистрируйтесь, чтобы оценивать материалы, создавать записи и писать комментарии.
Авторизуясь, вы соглашаетесь с правилами пользования сайтом и даете согласие на обработку персональных данных.
Нейросеть ускорит «гаражную амнистию»
Российские исследователи впервые продемонстрировали возможность применения нейронной сети PointNext для проведения государственного мониторинга земель. Использование нейросети позволит автоматизировать рутинные процессы при земельном планировании и, таким образом, ускорить процесс согласования документов на право собственности.
В статье, опубликованной в «Вестнике СГУГиТ», представлены наилучшие параметры для обучения модели с тем, чтобы обеспечить максимальную точность.
Для задач строительства, приватизации требуется регулярный мониторинг территорий. Ведут его, как правило, классическим методом. Сотрудники выезжают на место и проводят визуальный осмотр. Это отнимает много времени, сказывается нехватка персонала. Ученые из МФТИ и Кубанского государственного технологического университета предложили автоматизировать этот процесс.
Авторы работы приводят в пример реализацию закона о «гаражной амнистии» в Краснодаре. Согласно этого закона, граждане могут легализовать свой гараж и приобрести в собственность земельный участок под ним. Сейчас в работе департамента муниципальной собственности находится 7000 заявлений, люди ждут согласования документов от шести до 16 месяцев, в то время как регламент отводит на все месяц.
Ускорить процесс поможет съемка территории лазерным локатором (лидаром). Для распознавания объектов исследователи предложили использовать нейронную сеть PointNext, разработанную на основе PointNet++. Это программа с открытым кодом, написанная для работы с облаками точек лазерного отражения. Ее используют для сегментации, классификации и идентификации трехмерных объектов.
«Обычно нейросети используют для распознавания объектов на фото или видео, а PointNext работает с облаком точек лазерного отражения. Поэтому мы решили использовать ее», — пояснил Сергей Самарин, аспирант Физтех-школы радиотехники и компьютерных технологий МФТИ.
Лидар сканирует территорию лазерными импульсами, по времени их возвращения он определяет расстояние до объекта. В результате получается массив точек. Именно его и передают в нейросеть.
Но чтобы она выдала качественный результат, ее нужно обучить. Для этого используют эталонные наборы данных. В данном случае ученые воспользовались системой Terra_Maker, разработанной в Кубанском государственном университете. С ее помощью сгенерировали массив точек лазерного отражения участка размером 1000 на 1000 метров, где находится более 500 объектов недвижимости. Общее количество точек — более 4,7 миллионов. Все они были размечены на пять классов: земля, крыши зданий, низкая растительность, средняя растительность, высокая растительность.
Для оценки качества работы модели используют различные метрики, в первую очередь точность (accuracy), которая показывает долю верных ответов. Хорошая точность стремиться к 100 процентам (но не равна им). Чтобы получить максимальную точность, нужно правильно подобрать параметры работы нейросети. Именно эту задачу решали авторы исследования. Они перенастроили специально под нее PointNext и приступили к обучению.
Потребовалось 12 экспериментов, в результате которых определили оптимальное количество точек для одного обучаемого образца, размер сетки и количество эпох (когда через алгоритм проходит весь набор данных). В исследовании применяли функцию потерь CrossEntropy loss, оптимизатор Adam optimizer, экспоненциальное убывание скорости обучения (Step Decay).
Результата работы нейросети представлен в виде трехмерных графиков с точками, покрашенными определенным цветом. Крыша здания, к примеру, сиреневая, высокая растительность — красная.
Наиболее точный результат получили при 2500 точек в одном обучающем образце и сетке 25 метров. В процессе обучения выявили закономерность — чем меньше сторона сетки и меньше точек в облаке, тем выше точность. Если добавить в датасет информацию о цвете, то точность несколько снижается, но не существенно. В целом, чем меньше параметров, тем более эффективно предсказывает модели. Наилучшая точность, полученная в эксперименте — 0,9998. Такой результат, близкий к единице, говорит об идеальном наборе данных, с которыми работала нейросеть. С реальным датасетом, где есть искажения и шумы, точность будет ниже.
Следующим шагом ученые намерены задействовать воздушное лазерное сканирование на реальных объектах с последующей камеральной обработкой данных нейросетью.
«Вместо того, чтобы тратить целый день на обход земельных участков, мы запускаем беспилотник с лидаром, делаем съемку. Чистим данные от шумов и отправляем в нейросеть. Она сегментирует и классифицирует данные так, что мы понимаем, где на территории есть здания, например, гараж», — поделился планами Сергей Самарин.
Эта работа важна не только для реализации закона о «гаражной амнистии», но также для выявления незаконного строительства, контроля за нарушениями при строительстве, например, соблюдении этажности, отступов от границ земельных участков.
(опубликовано при поддержке гранта Минобрнауки России в рамках федерального проекта «Популяризация науки и технологий» № 075-15-2024-571)
Американские ученые проанализировали данные о поедании фекалий животными, чтобы выяснить, какие причины стоят за этим поведением и какие закономерности можно проследить. В результате они разделили всю выборку более чем из 150 видов на семь категорий по тому, что заставляет зверей питаться таким сомнительным продуктом.
Работать под началом шефа-абьюзера тяжело, но свежее исследование показало, что бывают варианты похуже. Ученые выяснили, что еще негативнее на моральный дух и производительность труда сотрудников влияет, когда во главе команды стоит самодур, у которого вспышки агрессии непредсказуемо сменяются этичным поведением.
Несмотря на отмену попытки «экономичной» ловли первой ступени, шестой испытательный полет Starship был успешным. Корабль — вторая ступень системы впервые продемонстрировала возможность маневра на орбите. Первая ступень после приводнения неожиданно для всех смогла пережить два взрыва, не утратив плавучесть. Среди наблюдавших за испытанием был Дональд Трамп.
Международная коллаборация физиков под руководством ученых из Йельского университета в США представила самые убедительные на сегодня подтверждения существования нового типа сверхпроводящих материалов. Доказательство существования нематической фазы вещества — научный прорыв, открывающий путь к созданию сверхпроводимости совершенно новым способом.
Принято считать, что естественный спутник Земли возник в результате ее столкновения с другой планетой, но к этой версии есть вопросы. Теперь ученые предложили рассмотреть сценарий возможного захвата Луны притяжением Земли из пролетавшей мимо двойной системы.
Ученые из Аргентины в серии экспериментов проследили за поведением домашних собак во время разногласий между членами семьи и выявили у четвероногих питомцев ряд характерных реакций на конфликт.
Под рыжим верхним слоем с виду обычного камня открылся целый калейдоскоп довольно неожиданных оттенков. Это особенно интересно с учетом того, где лежит камень — в марсианском кратере, который по всем признакам когда-то был озером.
Международная коллаборация физиков под руководством ученых из Йельского университета в США представила самые убедительные на сегодня подтверждения существования нового типа сверхпроводящих материалов. Доказательство существования нематической фазы вещества — научный прорыв, открывающий путь к созданию сверхпроводимости совершенно новым способом.
Органические молекулы с пи-связью образуют очень устойчивые геометрии, которые не любят нарушаться. В 1924 году немецкий химик Юлиус Бредт сформулировал соответствующий запрет, вошедший в учебники химии. Тем не менее это в некоторых случаях возможно. В новой работе американские исследователи представили несколько «антибредтовских» соединений из класса олефинов.
Вы попытались написать запрещенную фразу или вас забанили за частые нарушения.
ПонятноИз-за нарушений правил сайта на ваш аккаунт были наложены ограничения. Если это ошибка, напишите нам.
ПонятноНаши фильтры обнаружили в ваших действиях признаки накрутки. Отдохните немного и вернитесь к нам позже.
ПонятноМы скоро изучим заявку и свяжемся с Вами по указанной почте в случае положительного исхода. Спасибо за интерес к проекту.
ПонятноМы скоро прочитаем его и свяжемся с Вами по указанной почте. Спасибо за интерес к проекту.
Понятно
Комментарии