Уведомления
Авторизуйтесь или зарегистрируйтесь, чтобы оценивать материалы, создавать записи и писать комментарии.
Авторизуясь, вы соглашаетесь с правилами пользования сайтом и даете согласие на обработку персональных данных.
В НИТУ МИСИС представили нейросеть, которая точно определяет объекты, не загруженные в базы данных
Студенты Университета МИСИС и МФТИ совместно с учеными некоммерческой лаборатории исследований искусственного интеллекта T-Bank AI Research предложили новую ансамблевую нейросеть SDDE (Saliency Diversified Deep Ensembles), которая с большей точностью определяет объекты на изображениях, не загруженных в базы данных. В перспективе новый алгоритм поможет развить сферу беспилотных транспортных средств и медицинской диагностики, где важно различать неопознанные элементы и графические артефакты.
Исследователи представили свою работу в октябре на международной конференции по обработке изображений ICIP 2024 в Абу-Даби (ОАЭ).
С увеличением объема данных возникает потребность в более надежных нейросетях, способных не только классифицировать новые объекты, но и распознавать технические помехи, которые неизбежно возникают при получении изображения. Совокупность всей неизвестной информации называют данными вне распределения (ДВР). Человеческий фактор при обнаружении ДВР может привести к нежелательным последствиям. Создатели алгоритма решили эту задачу с помощью разнообразия ансамблевой модели, которое снизило корреляцию между вхождениями и повысило общую точность системы.
Ансамблевая нейросеть SDDE состоит из нескольких моделей, которые обучаются на подмножествах отдельно взятых баз данных, что позволяет каждой из них фокусироваться на уникальных характеристиках изображений. Это достигается с помощью диверсификации карт внимания каждой модели — концепта, позволяющего понять, куда смотрит нейросеть. В результате повышается разнообразие ансамбля и нейросеть определяет объекты на изображениях с минимальной погрешностью. Для оценки эффективности нейросети исследователи провели испытания на нескольких базах данных: CIFAR10, CIFAR100 и ImageNet-1K. Ансамблевая нейросеть SDDE продемонстрировала наилучшие результаты по сравнению со схожими алгоритмами, такими как Negative Correlation Learning и Adaptive Diversity Promoting.
«Одной из важнейших задач при разработке моделей машинного обучения является соответствие реальной вероятности той, которую выдает нейросеть. То есть нейросеть уверена настолько, насколько ей легко предсказать таргет для данного образца. Обычно сети вообще не сомневаются в своих предсказаниях. В рамках данного исследования мы предложили новый метод диверсификации ансамблей, основанный на логитах — то есть, значениях, которые нейросеть выдает перед тем, как превратить их в вероятности.
Это нововведение позволило повысить точность “мнения” нейросети при обнаружении данных вне распределения, что критично для применения моделей в реальных условиях. Например, в режиме автономного вождения необходимо безошибочно определять объекты на дороге, чтобы предотвращать аварии. В медицинской диагностике же требуется обширная база данных для правильной постановки диагноза. Неоткалиброванные модели могут быть чрезмерно уверены в своих неверных предположениях. У нашей нейросети излишняя уверенность отсутствует, что позволяет ей более адекватно оценивать свои расчеты», — рассказал студент третьего курса Института компьютерных наук НИТУ МИСИС Максим Жданов.
Для лучшего обнаружения помех-артефактов исследователи использовали подход Outlier Exposure, который заключается в обучении модели на специальных наборах данных, содержащих примеры ДВР. Ранее ученые Университета МИСИС и НИУ ВШЭ уже представили новую нейросеть LAPUSKA, которая справляется с улучшением качества изображений в два раза быстрее по сравнению с аналогичными продуктами.
Среди самых интригующих открытий космического телескопа «Джеймс Уэбб» — компактные объекты, получившие название «маленькие красные точки». Их видели только в самых дальних уголках Вселенной. Большинство возникло в первый миллиард лет после Большого взрыва, и ученые предполагали, что такие источники представляют собой небольшие компактные галактики. Однако международная команда астрономов пришла к иному выводу. Они предположили, что на самом деле «маленькие красные точки» — черные дыры, окруженные массивной газовой оболочкой.
Объединить конфликтующие свойства помогли квазичастицы со специфическим зарядом. Если удастся подтвердить предложенную теорию экспериментом, то перед нами — новый тип квантовых материалов.
Группа исследователей опровергла классическую теорию о случайности вымирания видов на примере морских хищников. Анализ эволюции акул и скатов за последние 145 миллионов лет показал, что риск исчезновения вида напрямую зависит от времени его существования: «новички» погибают гораздо чаще, чем эволюционные долгожители. Кроме того, ученые установили, что знаменитый астероид, погубивший динозавров, нанес океану не такой сильный удар, как последующее изменение климата.
Среди самых интригующих открытий космического телескопа «Джеймс Уэбб» — компактные объекты, получившие название «маленькие красные точки». Их видели только в самых дальних уголках Вселенной. Большинство возникло в первый миллиард лет после Большого взрыва, и ученые предполагали, что такие источники представляют собой небольшие компактные галактики. Однако международная команда астрономов пришла к иному выводу. Они предположили, что на самом деле «маленькие красные точки» — черные дыры, окруженные массивной газовой оболочкой.
Экологическое состояние морей, омывающих развитые и развивающиеся страны, — давняя проблема, о которой говорят ученые. Авторы нового исследования выявили в Средиземном море пещеры с рекордным количеством мусора.
Исследователи доказали, что влияние больших сделок на рынок описывается квадратичной зависимостью. Основой для анализа стали данные Токийской биржи.
С 2010-х в «Роскосмосе» говорили: будущая РОС сможет пролетать над полюсом, что даст ей возможности для новых научных экспериментов. Но вскоре после того, как в ноябре 2025 года Россия временно лишилась возможности запускать людей в космос, эта позиция изменилась. В результате запускать космонавтов с космодромов нашей страны станет довольно сложно.
На скалистых берегах аргентинской Патагонии разворачивается настоящая драма. Магеллановы пингвины, долгое время чувствовавшие себя в безопасности на суше в своих многотысячных колониях, столкнулись с новым и беспощадным врагом. Их извечные морские страхи — касатки и морские леопарды — теперь блекнут перед угрозой, пришедшей из глубины материка. Виновник переполоха — грациозный и мощный хищник, недавно вернувшийся на эти земли после долгого изгнания.
Позавчера, 27 ноября 2025 года, при запуске космонавтов к МКС на стартовую площадку № 31 упала кабина обслуживания стартового комплекса. Это означает, что новые пуски оттуда до починки невозможны. К сожалению, в 2010-х годах, в рамках «оптимизации» расходов, резервную площадку (с которой летал Юрий Гагарин) упразднили. Поэтому случилось беспрецедентное: в XXI веке страна с пилотируемой космической программой осталась без средств запуска людей на орбиту. Пока ремонт не закончится, проблема сохранится. Чем это может грозить?
Вы попытались написать запрещенную фразу или вас забанили за частые нарушения.
Понятно
Из-за нарушений правил сайта на ваш аккаунт были наложены ограничения. Если это ошибка, напишите нам.
Понятно
Наши фильтры обнаружили в ваших действиях признаки накрутки. Отдохните немного и вернитесь к нам позже.
Понятно
Мы скоро изучим заявку и свяжемся с Вами по указанной почте в случае положительного исхода. Спасибо за интерес к проекту.
Понятно
