Уведомления
Авторизуйтесь или зарегистрируйтесь, чтобы оценивать материалы, создавать записи и писать комментарии.
Авторизуясь, вы соглашаетесь с правилами пользования сайтом и даете согласие на обработку персональных данных.
Теория относительности для чайников
Специальная теория относительности, перевернувшая в начале прошлого столетия общепринятые представления о мире, до сих пор продолжает будоражить умы и сердца людей. Сегодня мы попытаемся разобраться вместе, что это такое.
В 1905 году Альберт Эйнштейн опубликовал специальную теорию относительности (СТО), которая объясняла, как интерпретировать движения между различными инерциальными системами отсчета – попросту говоря, объектами, которые движутся с постоянной скоростью по отношению друг к другу.
Эйнштейн объяснил, что когда два объекта двигаются с постоянной скоростью, следует рассматривать их движение друг относительно друга, вместо того чтобы принять один из них в качестве абсолютной системы отсчета.
Так что, если два космонавта, вы и, допустим, Герман, летите на двух космических кораблях и хотите сравнить ваши наблюдения, единственное, что вам нужно знать – это ваша скорость относительно друг друга.
Специальная теория относительности рассматривает лишь один специальный случай (отсюда и название), когда движение прямолинейно и равномерно. Если материальное тело ускоряется или сворачивает в сторону, законы СТО уже не действуют. Тогда в силу вступает общая теория относительности (ОТО), которая объясняет движения материальных тел в общем случае.
Теория Эйнштейна базируется на двух основных принципах:
1. Принцип относительности: физические законы сохраняются даже для тел, являющихся инерциальными системами отсчета, т. е. двигающимися на постоянной скорости относительно друг друга.
2. Принцип скорости света: скорость света остается неизменной для всех наблюдателей, независимо от их скорости по отношению к источнику света. (Физики обозначают скорость света буквой с).
Одна из причин успеха Альберта Эйнштейна состоит в том, что он ставил экспериментальные данные выше теоретических. Когда в ряде экспериментов обнаружились результаты, противоречащие общепринятой теории, многие физики решили, что эти эксперименты ошибочны.
Альберт Эйнштейн был одним из первых, кто решил построить новую теорию на базе новых экспериментальных данных.
В конце 19 века физики находились в поиске таинственного эфира – среды, в которой по общепринятым предположениям должны были распространяться световые волны, подобно акустическим, для распространения которых необходим воздух, или же другая среда – твердая, жидкая или газообразная. Вера в существование эфира привела к убеждению, что скорость света должна меняться в зависимости от скорости наблюдателя по отношению к эфиру.
Альберт Эйнштейн отказался от понятия эфира и предположил, что все физические законы, включая скорость света, остаются неизменными независимо от скорости наблюдателя – как это и показывали эксперименты.
Однородность пространства и времени
В Специальной теории относительности Эйнштейна постулируется фундаментальная связь между пространством и временем. Материальная Вселенная, как известно, имеет три пространственных измерения: вверх-вниз, направо-налево и вперед-назад. К нему добавляется еще одно измерение – временное. Вместе эти четыре измерения составляют пространственно-временной континуум.
Если вы двигаетесь с большой скоростью, ваши наблюдения относительно пространства и времени будут отличаться от наблюдений других людей, движущихся с меньшей скоростью.
На картинке ниже представлен мысленный эксперимент, который поможет понять эту идею. Представьте себе, что вы находитесь на космическом корабле, в руках у вас лазер, с помощью которого вы посылаете лучи света в потолок, на котором закреплено зеркало. Свет, отражаясь, падает на детектор, который их регистрирует.
Допустим, ваш корабль двигается с постоянной скоростью, равной половине скорости света (0.5c). Согласно СТО Эйнштейна, для вас это не имеет значения, вы даже не замечаете своего движения.
Однако Герман, наблюдающий за вами с покоящегося звездолета, увидит совершенно другую картину. С его точки зрения, луч света пройдет по диагонали к зеркалу на потолке, отразится от него и по диагонали упадет на детектор.
Другими словами, траектория луча света для вас и для Германа будет выглядеть по-разному и длина его будет различной. А стало быть и длительность времени, которое требуется лазерному лучу для прохождения расстояния к зеркалу и к детектору, будет вам казаться различным.
Это явление называется замедлением времени: время на звездолете, движущимся с большой скоростью, с точки зрения наблюдателя на Земле течет значительно медленнее.
Этот пример, равно как и множество других, наглядно демонстрирует неразрывную связь между пространством и временем. Эта связь явно проявляется для наблюдателя, только когда речь идет о больших скоростях, близких к скорости света.
Эксперименты, проведенные со времени публикации Эйнштейном своей великой теории, подтвердили, что пространство и время действительно воспринимаются по-разному в зависимости от скорости движения объектов.
Объединение массы и энергии
В своей знаменитой статье, опубликованной в 1905 году, Эйнштейн объединил массу и энергию в простой формуле, которая с тех пор известна каждому школьнику: E=mc^2.
Согласно теории великого физика, когда скорость материального тела увеличивается, приближаясь к скорости света, увеличивается и его масса. Т.е. чем быстрее движется объект, тем тяжелее он становится. В случае достижения скорости света, масса тела, равно как и его энергия, становятся бесконечными. Чем тяжелее тело, тем сложнее увеличить его скорость; для ускорения тела с бесконечной массой требуется бесконечное количество энергии, поэтому для материальных объектов достичь скорости света невозможно.
До Эйнштейна концепции массы и энергии в физике рассматривались по отдельности. Гениальный ученый доказал, что закон сохранения массы, как и закон сохранения энергии, являются частями более общего закона массы-энергии.
Благодаря фундаментальной связи между этими двумя понятиями, материю можно превратить в энергию, и наоборот – энергию в материю.
Многие любят зиму только потому, что в это время нет насекомых. Для этой «нелюбви» медики даже придумали название — инсектофобия. Если верить статистике, ею страдают до шести процентов жителей США. Остальных такая «мелочь» чаще всего вообще не интересует. А зря! Насекомые — это целый мир, весьма интеллектуальный и загадочный. Об их эволюции, самых крупных представителях в истории Земли и, конечно, когнитивных способностях этих крошечных существ Naked Science поговорил с кандидатом биологических наук, экскурсоводом Зоологического музея ЗИН РАН и популяризатором науки Ильей Удаловым.
Помпеи стали римской колонией лишь за 160 лет до извержения Везувия. Каменные плиты, пережившие катастрофу, хранят следы повозок, дождевых потоков, отпечатки ног. Каждая колея — словно страница дневника, рассказывающая о том, как жили Помпеи. Американский археолог изучил улицы города и узнал, как местные жители изменили свою жизнь после полной установки римской власти.
Солнечная радиация в межпланетном пространстве — одна из серьезных проблем для пилотируемой космонавтики. Полет на Марс длится долгие месяцы, а прогнозировать крупное солнечное событие пока не представляется возможным. Тем не менее ученые нашли способ оперативного оповещения экипажа о начале такого события и дать космонавтам время укрыться от пиковой дозы. Как выяснилось, в этом может помочь уже успешно работающий на Марсе прибор.
Пролетевший через Солнечную систему в 2017 году астероид Оумуамуа произвел неизгладимое впечатление в том числе своей беспрецедентно вытянутой формой. Астрономы попытались рассчитать, как он мог стать таким и почему в Солнечной системе мы не наблюдаем ничего подобного.
Астрономы рассчитали, сколько небесных тел могло прилететь в Солнечную систему от соседних звезд, расположенных в четырех световых годах от нас. Выяснилось, что такие объекты не только должны навещать нас, но и, вероятно, присоединяются ко множеству наших «местных» комет и астероидов. По расчетам, вокруг Солнца может обращаться около миллиона довольно крупных объектов из системы Альфы Центавра.
Ученые математически объяснили возможность обратного течения времени на микроуровне. Новое исследование показывает, что противоположные стрелы времени теоретически могут возникать в определенных квантовых системах.
В 2022-2025 годах страны Западной Европы попытались отказаться от природного газа из России. Автор новой работы показал, что получившиеся при этом результаты были во многом противоположны целям.
Пролетевший через Солнечную систему в 2017 году астероид Оумуамуа произвел неизгладимое впечатление в том числе своей беспрецедентно вытянутой формой. Астрономы попытались рассчитать, как он мог стать таким и почему в Солнечной системе мы не наблюдаем ничего подобного.
Астрономы обнаружили, что почти треть всех наблюдаемых галактик во Вселенной объединены в пять самых широкомасштабных структур — галактические сверхскопления. На составленной учеными трехмерной карте одно особенно выделяется своими рекордными размерами: простирается на миллиард с лишним световых лет.
Комментарии