Уведомления
Авторизуйтесь или зарегистрируйтесь, чтобы оценивать материалы, создавать записи и писать комментарии.
Авторизуясь, вы соглашаетесь с правилами пользования сайтом и даете согласие на обработку персональных данных.
Робот из MIT «видит» и ловко берет предметы любой формы
Инженеры из MIT научили робота хватать и перемещать предметы любых сложных форм — даже таких, управляться с которыми машину не учили.
Группа инженеров из Лаборатории кибернетики Массачусетского технологического института разработала систему Dense Object Nets (DON), которая позволяет роботам оценивать форму предметов достаточно точно для того, чтобы захватывать их, удерживать и производить простые манипуляции без предварительного обучения на конкретном типе объектов.
Чтобы система составила трехмерную карту объекта, рука-манипулятор поворачивает закрепленные на ней камеры под разными углами; нейросеть распознает изображения, поступающие с камеры, и определяет точные координаты каждой из множества точек, на которые раскладывается объект.
Обработав эти координаты, система классифицирует объекты и их части и анализирует пространственные отношения между ними. Чтобы продемонстрировать это, создатели DON сняли видео, на котором управляемый системой манипулятор сортирует ботинки по цветам и по команде поднимает их указанным способом — за язычок, — даже если никогда раньше не сталкивался с ботинком конкретного типа. В этом он похож на робота DexNet от инженеров из Калифорнийского университета в Беркли, хотя между управляющими ими алгоритмами есть большое различие: DexNet умеет только хватать предметы, но не умеет брать их в заданном месте и не различает типы объектов.
«Системы, использующие другие подходы к идентификации объектов, испытывают сложности, когда предмет ориентирован по отношению к роботу необычным способом. Для большинства поднять чашку за ручку — невыполнимая задача именно потому, что кружка может, например, лежать на боку или стоять вверх дном», — поясняет Лукас Мануэлли (Lucas Manuelli), один из разработчиков DON.
Роботами, умеющими различать, сортировать предметы и правильно с ними обращаться, могут найти применение на складах; создатели DON рассчитывают, что их разработка привлечет внимание крупных ретейлеров, таких как Amazon и Walmart. Кроме того, роботы, которые хорошо ориентируются в мире вещей, могут пригодиться дома — как помощники по хозяйству.
Существует два популярных подхода к обучению машин манипуляциям с физическими объектами. Первый подразумевает узкоспециальное обучение на конкретных примерах, второй — создание универсального алгоритма захвата. В первом случае машина будет справляться только с ограниченным набором заданий — скажем, сможет поднимать мячи, — но не справится с кубиком, пока ее не обучат брать кубики. Универсальные способы хватать вещи редко бывают эффективными, а кроме того, с захваченным «универсальным» способом предметом трудно производить точные манипуляции: например, поставить на заданное место. DON справляется даже с незнакомыми объектами и позволяет точно предсказывать, в какой точке окажутся их конкретные точки после перемещения.
Создатели DON выступят с докладом на конференции по обучению роботов в Цюрихе в октябре; кратко о разработке рассказывает портал Массачусетского технологического института. Ранее инженеры из MIT разработали робота, умеющего захватывать свободно висящие объекты.
Израильские специалисты выяснили, что для гарантированного выигрыша в онлайн-шахматах достаточно получить помощь специальной компьютерной программы всего в трех ключевых моментах игры. Этот метод настолько изощрен, что современные автоматические системы защиты могут пропустить его, списав гениальные ходы на внезапное озарение игрока. В мире, где ежедневно закрывают тысячи аккаунтов игроков в шахматы за нечестную игру, возникает новая, более сложная для обнаружения угроза — избирательное читерство.
Амфибии страдают от отдельных видов смертельно опасных заболеваний, среди которых выделяются грибковые инфекции. Ученые выяснили, что торговля лягушками из Бразилии, часто бывшими носителями местного вида грибка, привела к его глобальному распространению.
Повторное изучение окаменелости галлюцигении, впервые описанной в 1970-х годах, помогло палеонтологам больше узнать о рационе этого древнего существа. Ответ на вопрос о питании нашли не в ее останках, а на теле предполагаемой добычи.
Повторное изучение окаменелости галлюцигении, впервые описанной в 1970-х годах, помогло палеонтологам больше узнать о рационе этого древнего существа. Ответ на вопрос о питании нашли не в ее останках, а на теле предполагаемой добычи.
Амфибии страдают от отдельных видов смертельно опасных заболеваний, среди которых выделяются грибковые инфекции. Ученые выяснили, что торговля лягушками из Бразилии, часто бывшими носителями местного вида грибка, привела к его глобальному распространению.
Израильские специалисты выяснили, что для гарантированного выигрыша в онлайн-шахматах достаточно получить помощь специальной компьютерной программы всего в трех ключевых моментах игры. Этот метод настолько изощрен, что современные автоматические системы защиты могут пропустить его, списав гениальные ходы на внезапное озарение игрока. В мире, где ежедневно закрывают тысячи аккаунтов игроков в шахматы за нечестную игру, возникает новая, более сложная для обнаружения угроза — избирательное читерство.
От рыб произошли все наземные позвоночные, включая нас, но как именно рыбы стали главным населением морей — до последнего времени оставалось неясным. Авторы новой научной работы попытались доказать, что причиной этого было вымирание, возможно, вызванное белыми ночами.
Среди самых интригующих открытий космического телескопа «Джеймс Уэбб» — компактные объекты, получившие название «маленькие красные точки». Их видели только в самых дальних уголках Вселенной. Большинство возникло в первый миллиард лет после Большого взрыва, и ученые предполагали, что такие источники представляют собой небольшие компактные галактики. Однако международная команда астрономов пришла к иному выводу. Они предположили, что на самом деле «маленькие красные точки» — черные дыры, окруженные массивной газовой оболочкой.
Ученые задались вопросом: почему два расположенных по соседству спутника Юпитера такие разные, ведь на Ио повсеместно извергаются вулканы, а Европа полностью покрыта многокилометровой коркой льда. Есть версия, что Ио когда-то тоже была богата водой, но по итогам недавнего исследования это сочли неправдоподобным.
Вы попытались написать запрещенную фразу или вас забанили за частые нарушения.
Понятно
Из-за нарушений правил сайта на ваш аккаунт были наложены ограничения. Если это ошибка, напишите нам.
Понятно
Наши фильтры обнаружили в ваших действиях признаки накрутки. Отдохните немного и вернитесь к нам позже.
Понятно
Мы скоро изучим заявку и свяжемся с Вами по указанной почте в случае положительного исхода. Спасибо за интерес к проекту.
Понятно
Последние комментарии