• Добавить в закладки
  • Facebook
  • Twitter
  • Telegram
  • VK
  • Печать
  • Email
  • Скопировать ссылку
10.09.2018, 17:36
Редакция Naked Science
512

Робот из MIT «видит» и ловко берет предметы любой формы

Инженеры из MIT научили робота хватать и перемещать предметы любых сложных форм — даже таких, управляться с которыми машину не учили.

csail-don-system-grasping-side-shoe-mit-00
©Wikipedia / Автор: Lampronia Auxilius

Группа инженеров из Лаборатории кибернетики Массачусетского технологического института разработала систему Dense Object Nets (DON), которая позволяет роботам оценивать форму предметов достаточно точно для того, чтобы захватывать их, удерживать и производить простые манипуляции без предварительного обучения на конкретном типе объектов.

 

Чтобы система составила трехмерную карту объекта, рука-манипулятор поворачивает закрепленные на ней камеры под разными углами; нейросеть распознает изображения, поступающие с камеры, и определяет точные координаты каждой из множества точек, на которые раскладывается объект.

 

 

Обработав эти координаты, система классифицирует объекты и их части и анализирует пространственные отношения между ними. Чтобы продемонстрировать это, создатели DON сняли видео, на котором управляемый системой манипулятор сортирует ботинки по цветам и по команде поднимает их указанным способом — за язычок, — даже если никогда раньше не сталкивался с ботинком конкретного типа. В этом он похож на робота DexNet от инженеров из Калифорнийского университета в Беркли, хотя между управляющими ими алгоритмами есть большое различие: DexNet умеет только хватать предметы, но не умеет брать их в заданном месте и не различает типы объектов.

 

«Системы, использующие другие подходы к идентификации объектов, испытывают сложности, когда предмет ориентирован по отношению к роботу необычным способом. Для большинства поднять чашку за ручку — невыполнимая задача именно потому, что кружка может, например, лежать на боку или стоять вверх дном», — поясняет Лукас Мануэлли (Lucas Manuelli), один из разработчиков DON.

 

Роботами, умеющими различать, сортировать предметы и правильно с ними обращаться, могут найти применение на складах; создатели DON рассчитывают, что их разработка привлечет внимание крупных ретейлеров, таких как Amazon и Walmart. Кроме того, роботы, которые хорошо ориентируются в мире вещей, могут пригодиться дома — как помощники по хозяйству.

 

Существует два популярных подхода к обучению машин манипуляциям с физическими объектами. Первый подразумевает узкоспециальное обучение на конкретных примерах, второй — создание универсального алгоритма захвата. В первом случае машина будет справляться только с ограниченным набором заданий — скажем, сможет поднимать мячи, — но не справится с кубиком, пока ее не обучат брать кубики. Универсальные способы хватать вещи редко бывают эффективными, а кроме того, с захваченным «универсальным» способом предметом трудно производить точные манипуляции: например, поставить на заданное место. DON справляется даже с незнакомыми объектами и позволяет точно предсказывать, в какой точке окажутся их конкретные точки после перемещения.

 

Создатели DON выступят с докладом на конференции по обучению роботов в Цюрихе в октябре; кратко о разработке рассказывает портал Массачусетского технологического института. Ранее инженеры из MIT разработали робота, умеющего захватывать свободно висящие объекты. 

Нашли опечатку? Выделите фрагмент и нажмите Ctrl + Enter.
Подписывайтесь на нас в Telegram, Яндекс.Новостях и VK
Предстоящие мероприятия
12 июля, 22:10
Редакция Naked Science

Лето 2025 обещает насыщенную линейку научно-фантастических сериалов на ведущих стриминговых платформах. От адаптаций культовых романов до масштабных космических одиссей — мы отобрали проекты, на которые стоит обратить внимание.

14 июля, 10:19
Александр Березин

Фраза «понедельник — день тяжелый» несет больше смысла, чем можно подумать: в этот день действительно чаще случаются сердечные приступы и многое другое. Теперь исследователи показали, что такое влияние понедельники сохраняют даже после того, как человек прекратил ходить на работу.

14 июля, 11:29
ПНИПУ

Представьте мир, где извергаются серные вулканы высотой в 60 раз больше Эвереста, под 20-километровым льдом скрываются океаны, мощные гейзеры выбрасывают струи водяного пара в космос, а реки из жидкого метана стекают в углеводородные моря. Так выглядят спутники планет Солнечной системы. Ученый Пермского Политеха Евгений Бурмистров рассказал, почему они считаются самыми перспективными местами для поиска жизни и колонизации.

12 июля, 22:10
Редакция Naked Science

Лето 2025 обещает насыщенную линейку научно-фантастических сериалов на ведущих стриминговых платформах. От адаптаций культовых романов до масштабных космических одиссей — мы отобрали проекты, на которые стоит обратить внимание.

11 июля, 17:47
Денис Яковлев

Международная команда ученых оценила связь между длительностью физической активности, ее интенсивностью, риском смерти от всех причин и вероятностью развития сердечно-сосудистых и онкологических заболеваний.

9 июля, 08:26
Полина Меньшова

Подобрать тип физической активности, который лучше всего подходит человеку, можно исходя из особенностей его характера. Психологи из Великобритании определили, что люди с разными чертами личности получают больше удовольствия от разных видов спорта.

17 июня, 16:49
Адель Романова

Радиотелескопы уловили очень короткий сигнал, и по его характеристикам стало ясно, что он не может быть естественного происхождения. Астрономы пришли к выводу, что источник находился в околоземном пространстве — там, где уже более полувека летает «мертвый» аппарат NASA.

25 июня, 15:19
ФизТех

Группа российских ученых из Института прикладной математики имени М. В. Келдыша РАН и МФТИ провела детальное численное исследование источников шума, генерируемых крылом прототипа сверхзвукового бизнес-джета в режиме посадки. Эта работа, сочетающая передовые методы вычислительной гидродинамики и аэроакустики, впервые позволила с высокой точностью локализовать и охарактеризовать основные зоны шумообразования вблизи полноразмерной геометрии крыла модели прототипа сверхзвукового пассажирского самолета в посадочной конфигурации.

2 июля, 11:17
Юлия Тарасова

Результаты эксперимента в США в будущем могут позволить добиться разрешения на использование отработанной конопли в качестве кормовой добавки в животноводстве.

[miniorange_social_login]

Комментарии

Написать комментарий
Подтвердить?
Подтвердить?
Причина отклонения
Подтвердить?
Не получилось опубликовать!

Вы попытались написать запрещенную фразу или вас забанили за частые нарушения.

Понятно
Жалоба отправлена

Мы обязательно проверим комментарий и
при необходимости примем меры.

Спасибо
Аккаунт заблокирован!

Из-за нарушений правил сайта на ваш аккаунт были наложены ограничения. Если это ошибка, напишите нам.

Понятно
Что-то пошло не так!

Наши фильтры обнаружили в ваших действиях признаки накрутки. Отдохните немного и вернитесь к нам позже.

Понятно
Лучшие материалы
Закрыть
Войти
Регистрируясь, вы соглашаетесь с правилами использования сайта и даете согласие на обработку персональных данных.
Ваша заявка получена

Мы скоро изучим заявку и свяжемся с Вами по указанной почте в случае положительного исхода. Спасибо за интерес к проекту.

Понятно