• Добавить в закладки
  • Facebook
  • Twitter
  • Telegram
  • VK
  • Печать
  • Email
  • Скопировать ссылку
14.07.2021
Сколтех
1
1 825

Метод управления деформацией полупроводников приблизит создание электроники следующего поколения

4.5

Исследователи Сколтеха и их коллеги из США и Сингапура создали нейронную сеть, с помощью которой можно настраивать свойства полупроводниковых кристаллов и получать компоненты для электроники с непревзойденными характеристиками. Эта работа открывает новое направление в разработке микросхем и солнечных элементов следующего поколения за счет использования контролируемой деформации, с помощью которой можно буквально «на лету» менять свойства материала.

Метод управления деформацией полупроводников приблизит создание электроники следующего поколения / ©Getty images / Автор: Ольга Кузьмина

Статья с описанием результатов исследования опубликована в журнале npj Computational Materials. Наноматериалы довольно успешно выдерживают интенсивные деформации. Находясь в деформированном состоянии, они проявляют необычные оптические, тепловые, электронные и другие свойства, связанные с изменениями в межатомных расстояниях. Деформация может также изменять проводимость материала: например, известный полупроводниковыми свойствами кремний в деформированном состоянии превращается в эффективный проводник.

Кроме того, оказалось, что свойства материала можно менять по мере необходимости, варьируя степень деформации. Эта концепция положила начало целому направлению исследований − инжинирингу упругих деформаций (ESE). Новый подход может стать выходом из положения по мере неуклонного приближения предела эффективности микросхем по закону Мура.

Еще одна область, в которой можно использовать данный метод – разработка солнечных элементов. «Это позволяет создавать элементы с настраиваемыми свойствами, которые можно менять по мере необходимости для максимизации производительности и адаптации к внешним условиям», – поясняет соавтор исследования Александр Шапеев.

В своей предыдущей работе выпускник аспирантуры и постдок Сколтеха Евгений Цымбалов, доцент Сколтеха Александр Шапеев и их коллеги с помощью метода ESE преобразовали алмазные наноиглы из изолятора в высокопроводящий металлоподобный материал, что свидетельствует о широких прикладных возможностях технологии. В своем новом исследовании ученые представили архитектуру сверточной нейронной сети, которая позволяет применять методы ESE для полупроводников.

«Созданная нами нейронная сеть использует в качестве входных данных тензор деформации и предсказывает электронную зонную структуру − это своего рода физический „снимок“, описывающий электронные свойства деформированного материала. Его можно использовать для расчета любых представляющих интерес свойств, включая ширину запрещенной зоны, ее свойства и тензор эффективных масс электрона», − поясняет Шапеев.

Эта работа продолжает и развивает предыдущие исследования. «Мы уже вышли за рамки использовавшихся ранее подходов. Нами разработана и внедрена специальная модель на основе архитектуры сверточной нейронной сети для решения задач ESE, − отмечает Цымбалов. – Для улучшения работы модели мы также учитываем физические свойства и симметрии».

В целях повышения точности и сходимости модели в предложенном методе используются различные источники данных: с одной стороны, это данные, не затратные в вычислительном отношении, но имеющие низкую точность, а с другой – вычислительно затратные, но точные.

«Еще одна отличительная особенность метода − активное обучение: наша модель самостоятельно определяет, какие данные целесообразнее всего получить на следующем этапе обучения, а затем обучается на них. На заключительном этапе сеть обучается на наборе вычислительно затратных данных, полученных методом точных GW-вычислений. С помощью этой процедуры нам удается уменьшить количество необходимых вычислений», − рассказывает Евгений Цымбалов.

Исследователи отмечают, что по сравнению с другими современными решениями созданная ими нейронная сеть «более универсальна, точна и эффективна с точки зрения обеспечения возможности автономного глубокого обучения применительно к электронной зонной структуре кристаллических твердых тел», что обеспечивает более высокую скорость и точность метода при поиске и оптимизации в пространстве деформации и, следовательно, получение оптимальных значений деформации для заданных показателей качества.

В предыдущей работе ученые протестировали более раннюю версию модели в серии экспериментов in situ с алмазом. «К сожалению, пока не придумано устройства, которое могло бы деформировать алмаз с произвольным тензором деформации в 6D, но некоторые научные коллективы и лаборатории уже ведут экспериментальные разработки в этом направлении», − комментирует Евгений Цымбалов.

Работа проводилась в рамках многолетнего сотрудничества между Сколтехом, Массачусетским технологическим институтом (США) и Наньянским технологическим университетом (Сингапур). В ходе проекта ученые Сколтеха занимались в основном вычислительными задачами и методами машинного обучения, а их зарубежные коллеги отвечали за физические аспекты исследования.

«Сегодня мы работаем над следующей статьей, в которой будут рассмотрены границы допустимых упругих деформаций. Важность этой темы обусловлена тем, что теоретические пределы безопасной упругой деформации для ESE пока еще не определены», − отмечает в заключение Евгений Цымбалов.

Нашли опечатку? Выделите фрагмент и нажмите Ctrl + Enter.
Сколковский институт науки и технологий — негосударственный технологический университет, расположенный в инновационном центре Сколково. Институт был создан в 2011 году при поддержке Массачусетского технологического института. Модель института предусматривает тесную интеграцию технологического образования, исследовательской работы и предпринимательских навыков. Институт ведёт обучение по программам магистратуры и PhD, рабочий язык — английский.
Подписывайтесь на нас в Telegram, Яндекс.Новостях и VK
Вчера, 17:55
Наталия Лескова

Зачем нужно изучать ядра планет? Как зарождалась эта наука и почему она важна? Что такое гамма-всплески и зачем нам знать, откуда они идут? Остается ли Россия великой космической державой и зачем вообще это всё надо? Об этом рассказывает Игорь Георгиевич Митрофанов, руководитель отдела ядерной планетологии Института космических исследований РАН, доктор физико-математических наук, академик Международной академии астронавтики.

Позавчера, 11:31
Березин Александр

Несмотря на отмену попытки «экономичной» ловли первой ступени, шестой испытательный полет Starship был успешным. Корабль — вторая ступень системы впервые продемонстрировала возможность маневра на орбите. Первая ступень после приводнения неожиданно для всех смогла пережить два взрыва, не утратив плавучесть. Среди наблюдавших за испытанием был Дональд Трамп.

19 ноября
Андрей

Американские ученые проанализировали данные о поедании фекалий животными, чтобы выяснить, какие причины стоят за этим поведением и какие закономерности можно проследить. В результате они разделили всю выборку более чем из 150 видов на семь категорий по тому, что заставляет зверей питаться таким сомнительным продуктом.

16 ноября
Evgenia

Международная коллаборация физиков под руководством ученых из Йельского университета в США представила самые убедительные на сегодня подтверждения существования нового типа сверхпроводящих материалов. Доказательство существования нематической фазы вещества — научный прорыв, открывающий путь к созданию сверхпроводимости совершенно новым способом.

15 ноября
Елизавета Александрова

Принято считать, что естественный спутник Земли возник в результате ее столкновения с другой планетой, но к этой версии есть вопросы. Теперь ученые предложили рассмотреть сценарий возможного захвата Луны притяжением Земли из пролетавшей мимо двойной системы.

19 ноября
Юлия Трепалина

Ученые из Аргентины в серии экспериментов проследили за поведением домашних собак во время разногласий между членами семьи и выявили у четвероногих питомцев ряд характерных реакций на конфликт.

30 октября
Елизавета Александрова

Под рыжим верхним слоем с виду обычного камня открылся целый калейдоскоп довольно неожиданных оттенков. Это особенно интересно с учетом того, где лежит камень — в марсианском кратере, который по всем признакам когда-то был озером.

16 ноября
Evgenia

Международная коллаборация физиков под руководством ученых из Йельского университета в США представила самые убедительные на сегодня подтверждения существования нового типа сверхпроводящих материалов. Доказательство существования нематической фазы вещества — научный прорыв, открывающий путь к созданию сверхпроводимости совершенно новым способом.

31 октября
Татьяна

Органические молекулы с пи-связью образуют очень устойчивые геометрии, которые не любят нарушаться. В 1924 году немецкий химик Юлиус Бредт сформулировал соответствующий запрет, вошедший в учебники химии. Тем не менее это в некоторых случаях возможно. В новой работе американские исследователи представили несколько «антибредтовских» соединений из класса олефинов.

[miniorange_social_login]

Комментарии

1 Комментарий
И как удерживать в деф. состоянии, клеем, какая точность удержания, не вызывает ли это износ и разрушение?
Подтвердить?
Подтвердить?
Причина отклонения
Подтвердить?
Не получилось опубликовать!

Вы попытались написать запрещенную фразу или вас забанили за частые нарушения.

Понятно
Жалоба отправлена

Мы обязательно проверим комментарий и
при необходимости примем меры.

Спасибо
Аккаунт заблокирован!

Из-за нарушений правил сайта на ваш аккаунт были наложены ограничения. Если это ошибка, напишите нам.

Понятно
Что-то пошло не так!

Наши фильтры обнаружили в ваших действиях признаки накрутки. Отдохните немного и вернитесь к нам позже.

Понятно
Лучшие материалы
Войти
Регистрируясь, вы соглашаетесь с правилами использования сайта и даете согласие на обработку персональных данных.
Ваша заявка получена

Мы скоро изучим заявку и свяжемся с Вами по указанной почте в случае положительного исхода. Спасибо за интерес к проекту.

Понятно
Ваше сообщение получено

Мы скоро прочитаем его и свяжемся с Вами по указанной почте. Спасибо за интерес к проекту.

Понятно