• Добавить в закладки
  • Facebook
  • Twitter
  • Telegram
  • VK
  • Печать
  • Email
  • Скопировать ссылку
18.08.2020
ДВФУ
2 443

В ДВФУ предложили инновационный метод, который поможет созданию миниатюрной электроники будущего

5.9

Ученые ДВФУ совместно с коллегами из России, Южной Кореи и Австралии предложили инновационный метод управления спин-электронными свойствами и функциональностью тонкопленочных магнитных наносистем. Открытие важно для создания нового поколения миниатюрной электроники (спин-орбитроники) и сверхбыстрой высокоемкой компьютерной памяти.

В ДВФУ предложили инновационный метод, который поможет созданию миниатюрной электроники будущего / ©img3.akspic.ru / Автор: Pinaria Caprarius

Статья опубликована в журнале NPG Asia Materials. Ученые из лаборатории пленочных технологий Школы естественных наук Дальневосточного федерального университета (ШЕН ДВФУ) предлагают управлять функциональностью магнитной наносистемы, построенной по принципу сэндвича, через поверхностные шероховатости магнитной пленки, зажатой между слоем тяжелого металла и покрывающим слоем.

Варьируя амплитуду шероховатостей на нижней и верхней поверхностях (интерфейсах) магнитной пленки в диапазоне менее нанометра, что сравнимо с размерами атомов, исследователи смогли максимизировать полезные спин-электронные эффекты, важные для работы электроники будущего. Установлено, что для этого на нижнем и верхнем интерфейсе магнитной пленки шероховатости должны повторять друг друга.

Работоспособность подхода впервые продемонстрировали на примере магнитной системы, состоящей из слоя палладия (Pd) толщиной в диапазоне от 0 до 12 нанометров (нм), покрытого слоем платины толщиной 2 нм и ферромагнетика (сплав CoFeSiB) толщиной 1,5 нм. Многослойную структуру накрывали слоем из оксида магния (MgO), тантала (Ta) либо рутения (Ru) — разные материалы-«крышки» позволяют расширить возможности по управлению магнитными свойствами наносистемы.

«В современной электронике размеры транзисторов все время уменьшаются. При этом общий тренд развития направлен на получение атомарно-гладких бездефектных поверхностей, — объясняет Александр Самардак, автор идеи исследования, доктор физико-математических наук, проректор ДВФУ по научной работе. — Однако, было бы большой ошибкой стремиться к идеальным интерфейсам, потому что много новых и практически востребованных физических эффектов лежат за пределами атомарного упорядочения и идеально плоских поверхностей.

С уменьшением функциональных элементов электроники роль поверхностных шероховатостей очень сильно возрастает. 
Во многом благодаря развитию высокочувствительного аналитического оборудования, мы только сейчас начали глубоко проникать в природу обнаруженных явлений и понимать роль шероховатостей и атомарного перемешивания на интерфейсах. Главный посыл нашего исследования заключается в том, что атомарные шероховатости можно использовать во благо для реализации новых спин-орбитронных устройств с улучшенными свойствами».

Алексей Огнев, ведущий научный сотрудник лаборатории пленочных технологий кафедры физики низкоразмерных структур Школы естественных наук ДВФУ и Александр Самардак, проректор по науке ДВФУ / ©Пресс-служба ДВФУ

Ученый рассказал, что последние пять лет в мире активно развивается новая область физики, спин-орбитроника. Она изучает не просто спин электрона (собственный момент импульса электрона — квантовое свойство, не связанное с движением, перемещением или вращением, электрона как целого), а спин-орбитальное взаимодействие. Такое взаимодействие возникает между электроном, вращающимся по орбите вокруг атомного ядра и создающим магнитное поле, и его собственным магнитным моментом, который обусловлен спином электрона.

Преимущество спин-орбитроники в том, что функциональность создаваемых устройств (например, магнитной памяти) обеспечивается непосредственно через управление спин-орбитальным взаимодействием в составляющих их наноматериалах, например, в тяжелых металлах. Достаточно сильным спин-орбитальным взаимодействием обладают тяжелые металлы платиновой группы (Ru, Rh, Pd, Os, Ir, Pt). Если один из таких металлов привести в контакт с ультратонкой, толщиной в несколько атомных слоев, магнитной пленкой (например, Co, Ni, Fe, Py), можно радикально поменять электронные и магнитные свойства системы.

«Во-первых, можно управлять намагниченностью, получая наносистемы, намагниченные перпендикулярно плоскости пленки, — так делают в современных жестких дисках и разрабатываемых носителях нового поколения, чтобы повысить плотность хранения информации, увеличить скорость записи/чтения данных и количество циклов перезаписи.

Во-вторых, сильное спин-орбитальное взаимодействие в тяжелом металле приводит к «деформации» электронных орбиталей атомов магнитного материала (пленки), в результате возникают спиновые эффекты, такие как магнитное затухание и интерфейсное взаимодействие Дзялошинского-Мория, появляющееся на границе тяжелого металла и покрывающего его магнитного слоя.

Это антисимметричное взаимодействие ведет к трансформации ферромагнитного порядка и появлению нетривиальных спиновых текстур, таких как скирмионы и скирмиониумы. Такие спиновые текстуры имеют громадный потенциал для электроники будущего, играя роль энергонезависимых носителей информации.

Например, на их основе можно делать компоненты компьютерной памяти, которые будут работать без магнитных головок, а биты в них будут переключаться токовыми импульсами за счет «переворота» спинов электронов. Такие устройства будут работать на скоростях передачи битов до нескольких километров в секунду под действием только электрического тока и вмещать на порядок больше данных», — говорит Александр Самардак.

Для эксперимента методом молекулярно-лучевой эпитаксии исследователи вырастили серию палладиевых пленок с идеальной монокристаллической структурой (рисунок 1a). Ученые обнаружили, что шероховатая поверхность пленок Pd может быть описана синусоидальной функцией. Изменяя толщину пленок Pd в диапазоне от 0 до 12,6 нм, им удалось управлять амплитудой и периодом шероховатостей в диапазоне от 0 до 2 нм и от 0 до 50 нм соответственно.

Рисунок 1 (a) Идеальная монокристаллическая структура палладиевой пленки. Видны упорядоченные атомные плоскости / ©Пресс-служба ДВФУ

После этого магнетронным напылением в вакууме на поверхность палладия нанесли тонкие пленки платины и магнитного сплава Pt(2 нм)/CoFeSiB (1,5 нм) и покрыли их разными материалами (оксидом магния, танталом, рутением), (рисунок 1b). Материал «крышки» сильно влиял на магнитную анизотропию, в то время как влияние на взаимодействие Дзялошинского-Мория было не таким значительным. При этом наносимые слои Pt и CoFeSiB повторяли морфологию поверхности Pd.

Рисунок 1 (b) Многослойная структура Pd/Pt/CoFeSiB/Ta/TaOx, слои которой обладают кривизной (скоррелированными шероховатостями) / ©Пресс-служба ДВФУ

В итоге исследователи обнаружили, что, не изменяя состава магнитной системы, а только варьируя поверхностные шероховатости в суб-нанометровом диапазоне путем изменения толщины слоя Pd, можно радикально менять ее функциональные свойства. Например, величина взаимодействия Дзялошинского-Мория повышалась в 2,5 раза при толщине слоя Pd в 10 нм. Именно при этой толщине шероховатости нижнего и верхнего интерфейсов магнитной пленки были максимально скоррелированы.

По словам Александра Самардака, исследование заняло около четырех лет, еще год потребовался для публикации статьи в престижном журнале издательства Nature. Рецензенты долго не могли поверить в возможности управления спин-орбитальными свойствами путем модулирования шероховатостей. В ходе переписки авторам удалось убедить рецензентов и отстоять свою точку зрения.

В настоящее время идет подготовка новых образцов совместно с зарубежными партнерами для изучения влияния шероховатостей интерфейсов на спиновый эффект Холла и эффект передачи спин-орбитального крутящего момента импульса, что позволит вплотную подойти к реализации ячеек памяти, магнитный момент которых переключается только электрическим током.

Работа выполнена в рамках Государственного задания Минобрнауки России «Многофункциональные магнитные наноструктуры для спинтроники и биомедицины: синтез, структурные, магнитные, магнито-оптические и транспортные свойства». Ученые ДВФУ ведут фундаментальные исследования и практические разработки по приоритетным направлениям Стратегии научно-технологического развития РФ, включая такое направление, как новые виды материалов, которые необходимы для перехода к технологиям будущего. 

Нашли опечатку? Выделите фрагмент и нажмите Ctrl + Enter.
Дальневосточный федеральный университет (ДВФУ) — федеральный университет во Владивостоке, основанный в 2011 году в результате объединения четырёх вузов, ДВГУ, ТГЭУ, ДВГТУ (все три — Владивосток) и УГПИ (Уссурийск). Ведёт свою историю от Восточного института — первого высшего учебного заведения на Дальнем Востоке.
Подписывайтесь на нас в Telegram, Яндекс.Новостях и VK
Вчера, 15:14
Елизавета Александрова

Пролетевший через Солнечную систему в 2017 году астероид Оумуамуа произвел неизгладимое впечатление в том числе своей беспрецедентно вытянутой формой. Астрономы попытались рассчитать, как он мог стать таким и почему в Солнечной системе мы не наблюдаем ничего подобного.

Позавчера, 12:12
НИУ ВШЭ

Исследователи МИЭМ НИУ ВШЭ впервые в России показали эффективную работу беспроводного канала связи 6G на частотах субтерагерцового диапазона. Устройство передает данные со скоростью 12 гигабит в секунду и сохраняет стабильность сигнала, автоматически переключаясь при блокировке. Показатели соответствуют международным стандартам 6G.

Вчера, 19:15
Татьяна

Нейтрино крайне редко взаимодействуют с веществом: мириады этих почти безмассовых частиц пронзают Землю, оставаясь незамеченными. Для наблюдения за ними строят детекторы гигантского объема под землей или водой, способные уловить единичные события в потоках космических частиц. Один из таких инструментов расположен в Средиземном море. Это KM3NeT — нейтринный детектор черенковского типа объемом один кубический километр воды. Коллаборация работающих на нем ученых сообщила о регистрации сигнала от астрофизического нейтрино рекордной энергии.

10 февраля
Андрей

Европейские палеонтологи изучили исключительно сохранившийся скелет плезиозавра из юрского периода, обнаруженный в Германии еще в 1940 году. Тогда ископаемую рептилию спрятали от разрушений войны в музей, а через 80 лет выяснилось, что на теле древнего животного остались мягкие ткани — кожа с уцелевшими клеточными ядрами и чешуйки. Новые данные дополняют представление о внешнем виде плезиозавров, живших больше 180 миллионов лет назад.

10 февраля
Елизавета Александрова

Астрономы обнаружили, что почти треть всех наблюдаемых галактик во Вселенной объединены в пять самых широкомасштабных структур — галактические сверхскопления. На составленной учеными трехмерной карте одно особенно выделяется своими рекордными размерами: простирается на миллиард с лишним световых лет.

Вчера, 15:14
Елизавета Александрова

Пролетевший через Солнечную систему в 2017 году астероид Оумуамуа произвел неизгладимое впечатление в том числе своей беспрецедентно вытянутой формой. Астрономы попытались рассчитать, как он мог стать таким и почему в Солнечной системе мы не наблюдаем ничего подобного.

31 января
Березин Александр

В 2022-2025 годах страны Западной Европы попытались отказаться от природного газа из России. Автор новой работы показал, что получившиеся при этом результаты были во многом противоположны целям.

13 января
Юлия Трепалина

Многие предпочитают вступать в романтические отношения с людьми примерно своего возраста, но есть и пары с существенной возрастной разницей. Международная группа ученых недавно на крупной выборке людей проследила за изменениями возраста партнеров на старте отношений в разные годы жизни.

10 февраля
Андрей

Европейские палеонтологи изучили исключительно сохранившийся скелет плезиозавра из юрского периода, обнаруженный в Германии еще в 1940 году. Тогда ископаемую рептилию спрятали от разрушений войны в музей, а через 80 лет выяснилось, что на теле древнего животного остались мягкие ткани — кожа с уцелевшими клеточными ядрами и чешуйки. Новые данные дополняют представление о внешнем виде плезиозавров, живших больше 180 миллионов лет назад.

[miniorange_social_login]

Комментарии

Написать комментарий
Подтвердить?
Подтвердить?
Причина отклонения
Подтвердить?
Не получилось опубликовать!

Вы попытались написать запрещенную фразу или вас забанили за частые нарушения.

Понятно
Жалоба отправлена

Мы обязательно проверим комментарий и
при необходимости примем меры.

Спасибо
Аккаунт заблокирован!

Из-за нарушений правил сайта на ваш аккаунт были наложены ограничения. Если это ошибка, напишите нам.

Понятно
Что-то пошло не так!

Наши фильтры обнаружили в ваших действиях признаки накрутки. Отдохните немного и вернитесь к нам позже.

Понятно
Лучшие материалы
Войти
Регистрируясь, вы соглашаетесь с правилами использования сайта и даете согласие на обработку персональных данных.
Ваша заявка получена

Мы скоро изучим заявку и свяжемся с Вами по указанной почте в случае положительного исхода. Спасибо за интерес к проекту.

Понятно
Ваше сообщение получено

Мы скоро прочитаем его и свяжемся с Вами по указанной почте. Спасибо за интерес к проекту.

Понятно