Уведомления
Авторизуйтесь или зарегистрируйтесь, чтобы оценивать материалы, создавать записи и писать комментарии.
Авторизуясь, вы соглашаетесь с правилами пользования сайтом и даете согласие на обработку персональных данных.
Спиновые волны впервые обнаружили на наноуровне
Физики впервые смогли напрямую наблюдать спиновые волны, или магноны, внутри материала с нанометровым разрешением. Это достижение открывает путь к созданию нового поколения электроники, более быстрой и энергоэффективной.
Магнетизм таких материалов, как железо или никель, возникает из-за «крошечных магнитов», связанных с их атомами, — так называемых атомных спинов. В магнитных материалах спины соседних атомов движутся согласованно, создавая коллективные колебания. Эти колебания известны как спиновые волны, или магноны. Они распространяются по материалу, подобно волнам на поверхности воды.
Магноны играют ключевую роль в развивающейся области науки — магнонике. В отличие от традиционной электроники, где информацию переносят электрические заряды, магноника использует для этого спиновые волны. Такой подход обещает создание технологий следующего поколения: более быстрых, компактных и энергоэффективных. Потенциально устройства на основе магнонов могут обрабатывать данные со значительно меньшими затратами энергии, чем современные системы на основе полупроводников.
Несмотря на потенциал магнонов, до недавнего времени их изучение сталкивалось с фундаментальной проблемой. Увидеть и проанализировать поведение спиновых волн на наномасштабе было практически невозможно с помощью существующих технологий.
Большинство методов позволяли изучать магноны либо на больших участках поверхности, либо в большом объеме материала, но не давали информации о том, что происходит на уровне отдельных нанометровых структур. Без этого нельзя понять, как дефекты в кристаллической решетке или границы между разными материалами влияют на распространение спиновых волн, что критически важно для создания реальных устройств.
Ученые из Уппсальского университета в Швеции совместно с международной командой коллег совершили прорыв в этой области, разработав новый метод для визуализации и анализа магнонов с нанометровым разрешением. Результаты опубликованы в журнале Nature.
В эксперименте задействовали сканирующий просвечивающий электронный микроскоп STEM в лаборатории SuperSTEM в Великобритании. Особенность этого прибора — чрезвычайно высокое энергетическое разрешение, примерно семь миллиэлектронвольт. Такой точностью обладают всего несколько микроскопов в мире. Во время эксперимента пучок электронов пропускали через тонкий образец, нанокристалл оксида никеля, и измеряли мельчайшие потери энергии электронов. Именно эти потери несли в себе информацию о возбуждении магнонов внутри материала.

Ключевую роль в интерпретации экспериментальных данных сыграли два теоретических метода, разработанных в Уппсальском университете. Первый — это теория TACAW, которая позволяет моделировать взаимодействие быстрых электронов с магнонами. Расчеты, выполненные с помощью TACAW, помогли точно определить, какой именно сигнал в спектре потерь энергии соответствует спиновым волнам. Теория предсказала, что сигнал от магнонов в оксиде никеля должен появиться при энергии около 100 миллиэлектронвольт, что и подтвердил эксперимент.
Вторым важным инструментом стала программа UppASD для моделирования атомистической спиновой динамики. Это программное обеспечение позволило детально симулировать поведение спиновых волн в нанокристалле оксида никеля и сопоставить результаты с экспериментальными данными. Совпадение теоретических предсказаний и данных, полученных на микроскопе, послужило неопровержимым доказательством того, что ученым удалось зафиксировать именно магноны.
Результаты наглядно показали, что сигнал от магнонов в тысячи раз слабее сигнала от колебаний кристаллической решетки — фононов. Это и делало его обнаружение таким сложным. Исследователи не только зафиксировали магноны, но и составили их пространственную карту. Они показали, что сигнал от спиновых волн наблюдался исключительно внутри 30-нанометровой пленки оксида никеля и полностью исчезал на ее границе с немагнитной подложкой. Это стало прямым доказательством того, что теперь магноны можно изучать с нанометровым пространственным разрешением.
Исследование может стать важной вехой в развитии магноники и электронной микроскопии. Оно открывает новые возможности для изучения фундаментальных свойств магнетизма на наноуровне. Теперь ученые могут напрямую видеть, как спиновые волны взаимодействуют с дефектами, границами и другими наноразмерными особенностями материала. Это знание необходимо для разработки и создания нового поколения спиновых электронных устройств, которые в будущем могут прийти на смену современной электронике.
У побережья Канады морские биологи стали свидетелями необычного случая. Косатки и дельфины объединили свои силы, чтобы вместе охотиться на тихоокеанского лосося. Они погружались в темные глубины, а после удачной охоты делились пищей. Это первое задокументированное охотничье сотрудничество между двумя видами морских млекопитающих.
Развитие городского транспорта со временем упирается в пределы наземной инфраструктуры. Рост трафика, дефицит территории и высокая стоимость строительства традиционных магистралей стимулируют поиск альтернативных решений, таких как транспортно-инфраструктурный комплекс uST, не требующий значительного землеотвода под застройку. Белорусские инженеры подробно исследовали возможности применения технологии uST в городской среде.
Во Франции достраивают международный термоядерный реактор ИТЭР, в проекте которого Россия выступила и инициатором, и поставщиком ключевых компонентов: например, таких, как сверхпроводники, позволяющие магнитам токамака удерживать плазму при температуре до полутора сотен миллионов градусов. Но одновременно с этим проектом в нашей стране работают над национальным проектом токамака с реакторными технологиями (ТРТ), строительство которого начинается во второй половине 2020-х годов. Что будет отличать его от ИТЭР и других реакторов-предшественников — в инфографике Naked Science.
С 2010-х в «Роскосмосе» говорили: будущая РОС сможет пролетать над полюсом, что даст ей возможности для новых научных экспериментов. Но вскоре после того, как в ноябре 2025 года Россия временно лишилась возможности запускать людей в космос, эта позиция изменилась. В результате запускать космонавтов с космодромов нашей страны станет довольно сложно.
Специфическая тревога из-за ненадежности цифровых образов реальности и иллюзии тотального контроля над действительностью получила название «аффект зомби». Заведующий кафедрой философии НИУ ВШЭ — Санкт-Петербург Иван Микиртумов исследовал феномен в рамках проекта РНФ «Экзистенциальный опыт в цифровой среде».
Раскопки мастерской, погребенной в Помпеях почти 2000 лет назад, помогли археологам больше узнать о римских строительных технологиях, а именно — определить методы изготовления римского бетона и раскрыть секрет его долговечности.
С 2010-х в «Роскосмосе» говорили: будущая РОС сможет пролетать над полюсом, что даст ей возможности для новых научных экспериментов. Но вскоре после того, как в ноябре 2025 года Россия временно лишилась возможности запускать людей в космос, эта позиция изменилась. В результате запускать космонавтов с космодромов нашей страны станет довольно сложно.
Позавчера, 27 ноября 2025 года, при запуске космонавтов к МКС на стартовую площадку № 31 упала кабина обслуживания стартового комплекса. Это означает, что новые пуски оттуда до починки невозможны. К сожалению, в 2010-х годах, в рамках «оптимизации» расходов, резервную площадку (с которой летал Юрий Гагарин) упразднили. Поэтому случилось беспрецедентное: в XXI веке страна с пилотируемой космической программой осталась без средств запуска людей на орбиту. Пока ремонт не закончится, проблема сохранится. Чем это может грозить?
Японские биологи повторили античную технологию производства вина из изюма, чтобы выяснить механизм его брожения. Исследователи показали, что сушеный виноград, в отличие от свежего, накапливает на поверхности дикие дрожжи и способен превращать воду в алкоголь без внесения дополнительных заквасок.
Вы попытались написать запрещенную фразу или вас забанили за частые нарушения.
Понятно
Из-за нарушений правил сайта на ваш аккаунт были наложены ограничения. Если это ошибка, напишите нам.
Понятно
Наши фильтры обнаружили в ваших действиях признаки накрутки. Отдохните немного и вернитесь к нам позже.
Понятно
Мы скоро изучим заявку и свяжемся с Вами по указанной почте в случае положительного исхода. Спасибо за интерес к проекту.
Понятно

Последние комментарии