Нейросеть научили предсказывать наводнения по Flickr — Naked Science
9 минут
Редакция

Нейросеть научили предсказывать наводнения по Flickr

Современные системы предупреждения об опасности стихийных бедствий во многом основаны на работе специализированного оборудования и профессиональных аналитиков. В то же время существуют сервисы, с помощью которых все желающие в реальном времени могут сообщить властям об изменении некоторых климатических показателей, например количества осадков или уровня водоемов. Кроме того, ранее Геологическая служба США (USGS) признала, что анализ пользовательского...

untitled-1
©Wikipedia

Современные системы предупреждения об опасности стихийных бедствий во многом основаны на работе специализированного оборудования и профессиональных аналитиков. В то же время существуют сервисы, с помощью которых все желающие в реальном времени могут сообщить властям об изменении некоторых климатических показателей, например количества осадков или уровня водоемов. Кроме того, ранее Геологическая служба США (USGS) признала, что анализ пользовательского контента и геопозиционирования постов в Twitter может быть хорошим дополнением к высокотехнологичным методам, выступая в роли «социального барометра».

 

Прошлые исследования показали, что схожим образом может использоваться сервис для обмена фотографиями Flickr. Так, динамика публикаций, а также характер их описания и тегов коррелировали с колебаниями атмосферного давления в штате Нью-Джерси накануне и во время урагана «Сэнди» в 2012 году, что теоретически позволяло прогнозировать изменения погоды в пострадавших районах. Тем не менее, существующие методы анализа контента в соцсетях часто зависят от ключевых слов и фраз, соответствующих конкретному типу или названию стихийного бедствия («наводнение», «Катрина»). По мнению авторов новой работы, такой подход может быть эффективен при решении оперативных задач, но его возможности сильно ограничены.

 

Чтобы восполнить пробел, ученые из Уорикского университета разработали алгоритм для семантического анализа тегов, который тренировали с помощью метода матрицы корреляции деконструированных каскадов (Deconstructed Cascade Correlation Matrix). Этот метод позволяет обучать искусственную нейросеть анализу целевой проблемы, «замораживая» весовые коэффициенты скрытых блоков на входе, — в результате оценка остается относительно стабильной несмотря на изменчивость параметров. Кроме того, DCCM предусматривает возможность вертикальной и горизонтальной деконструкции переменных и работу онлайн. Метод является междисциплинарным и применяется, в том числе, для прогнозирования погоды.

 

Команда обучала новый алгоритм на фотографиях и видеороликах из пакета Yahoo Flickr Creative Commons 100M (YFCC100M), которые были опубликованы в период с апреля 2004 по август 2014 года. На входе компьютер анализировал материалы по четырем общим («природа», «пейзаж», «река», «вода») и двум сводным («RW» — от «река» и «вода», и «NL» — от «природа» и «пейзаж») тегам, каждый из которых на выходе был связан с специфическими («потоп», «наводнение», «пойма») тегами без указания атрибутов веса. Сопоставление тегов с риском стихийного бедствия проводилось на основании трех параметров: масштаба события, количества публикаций за пять суток до пика наводнения и спустя пять суток, а также шаблона поведения в пиковый период наводнения.

 

Сравнение числа тегов «RW» и «наводнение» (a), числа тегов «RW» и NL» (b) до и после (1) и в пиковый период наводнения (2) / ©Nataliya Tkachenko et al., PLOS ONE, 2017

 

Результаты показали, что появление во Flickr тегов, связанных с наводнениями, статистически значимо коррелирует с показателем встречаемости специфических («вода», «река») и сводных («RW») тегов. В то же время угроза стихийного бедствия оказалась почти не связана с ростом числа таких тегов, как «пейзаж» и «природа». Примечательно, что теги «вода» и «река» заняли промежуточное положение между маркерами бедствия и тематикой природы и примерно одинаково коррелировали с остальными тегами. Сводные теги чаще встречались за один день до пикового периода наводнения, при этом по мере приближения к пику тег «RW» использовался все чаще, а тег «NL», напротив, резко терял популярность.

 

Кроме того, ученые ретроспективно проверили способность модели предсказывать наводнение по числу публикаций в день за пять суток до события. Наиболее сильной корреляция оказалась для тегов «RW» и «вода». Так, на угрозу бедствия указывал рост числа загрузок с тегом «RW» до 100 и более за пять дней до наводнения с последующим плавным падением показателя. При увеличении количества публикаций с тегом «RW» до 125 и более в день корреляция увеличивалась; схожая динамика оказалась характерна для роста загрузок с тегом «вода» до 125 и более в день с пиком за три дня до наводнения и последующим снижением показателя.

 

По мнению авторов, их исследование указывает на то, что социальные сети являются ресурсом, который может использоваться в сочетании с профессиональными источниками метеорологичесикх данных. В будущем такие системы предупреждения, основанные на анализе пользовательского контента, могли бы обладать беспрецедентными точностью и эффективностью, считают ученые.

Поведение пользователей социальных сетей становится объектом изучения не впервые. Ранее психологи связали активность на таких площадках с чувством социальной изоляции, а физики сравнили распространение мемов в социальных сетях со статистическими моделями, которые описывают эпидемии и финансовые рынки.

Нашли опечатку? Выделите фрагмент и нажмите Ctrl + Enter.
30 сентября
2 минуты
Илья Ведмеденко

Новейший истребитель пятого поколения F-35B, принадлежащий Корпусу морской пехоты США, потерпел крушение в Южной Калифорнии. Летчик успешно катапультировался.

29 сентября
10 минут
Мария Азарова

Помимо этого, удалось выяснить, как это извержение происходило и какую роль сыграло в развитии майяской цивилизации.

30 сентября
4 минуты
Мария Азарова

По заказу Лувра «Портрет госпожи Лизы дель Джокондо» оцифровали с помощью мультиспектральной камеры высокого разрешения. В итоге ученым удалось предположить, что помогало Леонардо да Винчи при создании этой картины.

28 сентября
29 минут
Александр Березин

Сентябрь 2020 года принес в Закавказье войну — столкновение Азербайджана и Нагорного Карабаха получило большой размах, общее число жертв, судя по всему, уже перевалило за сотню, а Ереван и Баку объявили мобилизацию (в Азербайджане — частичную). Объективного смысла в войне для самих участников нет. Баку не победит, но и Армения от конфликта ничего не выиграет. Пользу конфликт, однако, объективно принесет Турции, а также тем, кто поставляет в Азербайджан оружие. Возникает вопрос: почему война оказалась возможна, несмотря на дружественную позицию России к Армении, и зачем на нее пошли в Баку? И есть ли у Еревана разумный выход из назревающей бойни?

30 сентября
2 минуты
Илья Ведмеденко

Новейший истребитель пятого поколения F-35B, принадлежащий Корпусу морской пехоты США, потерпел крушение в Южной Калифорнии. Летчик успешно катапультировался.

25 сентября
10 минут
Мария Азарова

По словам авторов эксперимента, им удалось выявить у черных ворон важный маркер сознания — способности субъективно переживать события внешнего мира и собственной жизни.

28 сентября
29 минут
Александр Березин

Сентябрь 2020 года принес в Закавказье войну — столкновение Азербайджана и Нагорного Карабаха получило большой размах, общее число жертв, судя по всему, уже перевалило за сотню, а Ереван и Баку объявили мобилизацию (в Азербайджане — частичную). Объективного смысла в войне для самих участников нет. Баку не победит, но и Армения от конфликта ничего не выиграет. Пользу конфликт, однако, объективно принесет Турции, а также тем, кто поставляет в Азербайджан оружие. Возникает вопрос: почему война оказалась возможна, несмотря на дружественную позицию России к Армении, и зачем на нее пошли в Баку? И есть ли у Еревана разумный выход из назревающей бойни?

13 сентября
37 минут
Александр Березин

640 лет назад завершилось крупнейшее сражение средневековой Европы — битва на Куликовом поле. В конце XX века ряд историков заявил: это была мелкая незначительная стычка, а вовсе не масштабное событие, запустившее формирование единого русского государства. По их мнению, ни о какой борьбе Москвы с Золотой Ордой в этом сражении просто не могла идти речь: места на поле боя недостаточно. Получается, события, описанные в летописях, были почти полной выдумкой. Однако теперь ситуация вдруг развернулась на 180 градусов: оказалось, место сражения действительно лежит в Тульской области… но совсем на другом поле. И это заметно меняет всю историю Руси того времени. Попробуем разобраться почему.

7 сентября
5 минут
Илья Ведмеденко

Недавно запущенный китайский потенциально многоразовый космический аппарат вернулся домой. Как стало известно, перед этим от него отсоединился некий объект, предназначение которого неизвестно.

[miniorange_social_login]

Комментарии

Написать комментарий

Подтвердить?
Лучшие материалы
Предстоящие мероприятия
Войти
Регистрируясь, вы соглашаетесь с правилами использования сайта и даете согласие на обработку персональных данных.

Сообщить об опечатке

Текст, который будет отправлен нашим редакторам: