• Добавить в закладки
  • Facebook
  • Twitter
  • Telegram
  • VK
  • Печать
  • Email
  • Скопировать ссылку
01.12.2020
Сергей Васильев
2
6 404

Искусственный интеллект решил проблему фолдинга белков

❋ 6.9

Нейросеть AlphaFold впервые в истории смогла точно предсказать пространственную форму сложных белков по их аминокислотной последовательности.

©Argonne National Laboratory / Автор: Андрей Чернов

Искусственный интеллект решил задачу, которая уже около полувека остается одной из самых актуальных для биологии: предсказание третичной структуры белков по первичной. Теперь, зная аминокислотную последовательность крупной белковой молекулы, можно будет рассчитать ее трехмерную пространственную конфигурацию. О достижении сообщается в пресс-релизе, распространенном британским стартапом DeepMind.

Дело в том, что свойства и функции белков определяются их трехмерной структурой, и многие важные находки о том, как именно они работают, сделали на основе именно таких структур. Десятилетиями для этого применяют такие методы, как рентгеновская кристаллография, ядерный магнитный резонанс или криоэлектронная микроскопия — длительные, сложные и трудоемкие. Однако даже они не всегда справляются; в результате сегодня установлены 3D-структуры примерно 170 тысяч белков из около 200 миллионов, известных науке.

Между тем в природе третичная структура белков определяется первичной — последовательностью аминокислот, которые образуют цепочки этих молекул: они складываются естественным образом, сами по себе. Этот процесс называют «укладкой», фолдингом белка. Неудивительно, что долгие годы ученые стремились к тому, чтобы моделировать его математически. Задача оказалась настолько сложна, что даже применение суперкомпьютеров здесь не слишком помогло: число вариантов, которые требуется рассчитать для молекул, состоящих из сотен аминокислот, получается астрономическим.

©DeepMind

Чтобы стимулировать работы в этом направлении, с 1994-го каждые два года проводят испытания CASP (Critical Assessment of protein Structure Prediction — «Критическая оценка предсказания структуры белков»). Создатели подобных проектов и алгоритмов со всего мира получают аминокислотные последовательности примерно сотни белков, структуры которых еще неизвестны, и пытаются вычислить их с помощью своих моделей. Параллельно в лабораториях работают ученые, действующие «классическими» методами структурной биологии. Затем полученные структуры сравнивают, вычисляя величину совпадения — GDT.

Значения GDT от 90 до 100 считают точным предсказанием структуры, и для коротких пептидов, состоящих из нескольких десятков аминокислот этого удалось добиться еще в 1990-х. Однако для белков, включающих сотни аминокислот, GDT долгие годы держались на «позорном» уровне — около 20. Лишь несколько лет назад, используя сложнейшие алгоритмы, эту цифру удалось довести до 40, чего по-прежнему недостаточно.

Средние результаты GDT на конкурсах прошлых лет и 2020-го; красная линия — результаты AlphaFold. Значения на оси абсцисс соответствуют сложности моделируемых белков / ©Chris Bickel, Science

С 2018 года в конкурсе CASP участвует и проект AlphaFold, который разрабатывает британская компания DeepMind — та самая, в которой ранее создали ИИ, побеждающий профессионалов игры го. Уже тогда AlphaFold оказался лидером рейтинга, продемонстрировав GDT на уровне до 60 даже для сложнейших структур. К конкурсу 2020 года ИИ усовершенствовали и обучили на 170 тысячах известных белковых структур. На испытаниях он оказался способен предсказывать фолдинг со средним GDT более 92 и свыше 87 — для наиболее сложных молекул.

Специалисты уже называют это событие одним из важнейших прорывов последних лет. Возможно, вскоре нейросети позволят рассчитывать трехмерные структуры белков «на лету», по мере необходимости. Задача, которая прежде была настолько сложна, что авторы некоторых таких работ удостаивались Нобелевской премии, станет рутиной.

Нашли опечатку? Выделите фрагмент и нажмите Ctrl + Enter.
Подписывайтесь на нас в Telegram, Яндекс.Новостях и VK
Предстоящие мероприятия
3 июля, 14:18
Юлия Тарасова

Результаты нового исследования разошлись с распространенным представлением о том, что наличие собаки, кошки или другого домашнего компаньона безусловно положительно влияет на благополучие людей. В некоторых случаях возможен негативный эффект.

2 июля, 11:17
Юлия Тарасова

Результаты эксперимента в США в будущем могут позволить добиться разрешения на использование отработанной конопли в качестве кормовой добавки в животноводстве.

Вчера, 11:00
НИУ ВШЭ

В 1968 году американский математик Пол Чернов предложил теорему для приближенного вычисления полугрупп операторов — сложных конструкций, описывающих эволюцию многочастичных систем. Метод основан на последовательных приближениях, но скорость их сходимости оставалась неясной. Эту задачу впервые полностью решили математики из нижегородского кампуса НИУ ВШЭ, что открывает путь к более точным вычислениям в науке.

2 июля, 11:17
Юлия Тарасова

Результаты эксперимента в США в будущем могут позволить добиться разрешения на использование отработанной конопли в качестве кормовой добавки в животноводстве.

28 июня, 18:58
Игорь Байдов

За последние 30 лет размер трески, обитающей в Балтийском море, значительно уменьшился. Если раньше рыбаки вылавливали из воды особей размером с маленького ребенка, то теперь добытая рыба легко помещается в ладонях. Авторы нового исследования винят в этом человека, который заставил один из видов эволюционировать в «карликов».

3 июля, 14:18
Юлия Тарасова

Результаты нового исследования разошлись с распространенным представлением о том, что наличие собаки, кошки или другого домашнего компаньона безусловно положительно влияет на благополучие людей. В некоторых случаях возможен негативный эффект.

17 июня, 16:49
Адель Романова

Радиотелескопы уловили очень короткий сигнал, и по его характеристикам стало ясно, что он не может быть естественного происхождения. Астрономы пришли к выводу, что источник находился в околоземном пространстве — там, где уже более полувека летает «мертвый» аппарат NASA.

25 июня, 15:19
ФизТех

Группа российских ученых из Института прикладной математики имени М. В. Келдыша РАН и МФТИ провела детальное численное исследование источников шума, генерируемых крылом прототипа сверхзвукового бизнес-джета в режиме посадки. Эта работа, сочетающая передовые методы вычислительной гидродинамики и аэроакустики, впервые позволила с высокой точностью локализовать и охарактеризовать основные зоны шумообразования вблизи полноразмерной геометрии крыла модели прототипа сверхзвукового пассажирского самолета в посадочной конфигурации.

2 июля, 11:17
Юлия Тарасова

Результаты эксперимента в США в будущем могут позволить добиться разрешения на использование отработанной конопли в качестве кормовой добавки в животноводстве.

[miniorange_social_login]

Комментарии

2 Комментария
Kostik Kit
01.12.2020
-
0
+
Хоть какое-то полезное применение ИИ на нейросетях нашли
Подтвердить?
Подтвердить?
Причина отклонения
Подтвердить?
Не получилось опубликовать!

Вы попытались написать запрещенную фразу или вас забанили за частые нарушения.

Понятно
Жалоба отправлена

Мы обязательно проверим комментарий и
при необходимости примем меры.

Спасибо
Аккаунт заблокирован!

Из-за нарушений правил сайта на ваш аккаунт были наложены ограничения. Если это ошибка, напишите нам.

Понятно
Что-то пошло не так!

Наши фильтры обнаружили в ваших действиях признаки накрутки. Отдохните немного и вернитесь к нам позже.

Понятно
Закрыть
Войти
Регистрируясь, вы соглашаетесь с правилами использования сайта и даете согласие на обработку персональных данных.
Ваша заявка получена

Мы скоро изучим заявку и свяжемся с Вами по указанной почте в случае положительного исхода. Спасибо за интерес к проекту.

Понятно