Уведомления
Авторизуйтесь или зарегистрируйтесь, чтобы оценивать материалы, создавать записи и писать комментарии.
Авторизуясь, вы соглашаетесь с правилами пользования сайтом и даете согласие на обработку персональных данных.
Предсказуемый киберспорт: движения в кресле позволяют отличить профессионального игрока от любителя
Группа молодых ученых из Центра Сколтеха по научным и инженерным вычислительным технологиям для задач с большими массивами данных (CDISE) c помощью искусственного интеллекта определила, как движения в кресле могут выдать в киберигроке профессионала.
Методы машинного обучения успешно предсказывают мастерство игрока в 77 % случаев. Результаты работы были представлены на престижном форуме — V международной конференции IEEE по проблемам Интернета людей (IoP 2019), где получили приз за лучшую научную работу.
За последние несколько лет киберспорт прошел путь от видеоигр для школьников до целой спорт-индустрии c профессиональными командами, тренерами и большими инвестициями. Как и в любом другом спорте, кибератлеты бывают профессионалами и любителями, и понимание того, как отличить одних от других, важно для оптимизации тренировочного процесса.
Студенты-магистры из Сколтеха (Москва), МФТИ (Москва) и ГУАП (Cанкт-Петербург) под руководством профессоров Сколтеха Андрея Сомова и Евгения Бурнаева решили найти связь между эффективностью кибератлета в игре и характером его движений в кресле.
«Мы предположили, что между “стилем” движения игрока в кресле и его мастерством есть связь. В то же время было интересно посмотреть, как игроки реагируют на игровые события (когда игрок убивает, умирает, или идет перестрелка). Вряд ли профессиональные игроки и новички реагируют одинаково», — рассказывает первый автор исследования, магистрант Сколтеха Антон Смердов.
Для эксперимента были приглашены 19 игроков разных уровней: девять профессионалов и десять любителей. Мастерство игроков оценивали аналогично тому, как измеряют мастерство пилотов —наигранными часами. Всем было предложено играть в популярную видеоигру Counter-Strike: Global Offensive (CS:GO) от получаса до часа. Для сбора данных использовались акселерометр и гироскоп, интегрированные в кресло.
«Полученные данные были порезаны на трехминутные сессии, так как трех минут движений в кресле достаточно, чтобы понять поведение игрока. В то же время это увеличивает выборку для обучения алгоритмов», — поясняет Антон Смердов.
Из каждой сессии ученые извлекали паттерны, по которым можно оценивать поведение игрока: с какой частотой и интенсивностью он двигается или крутится в кресле для каждой из трех осей и как часто откидывается на спинку кресла. Суммарно для всех временных интервалов получился 31 паттерн на каждого игрока. С помощью методов статистики выделили восемь самых важных признаков и применили к ним методы машинного обучения.
Лучше всего сработал популярный метод Random Forest, продемонстрировавший семидесятисемипроценую точность при определении уровня мастерства по трехминутной сессии. Также полученные результаты показали, что профессиональные игроки в целом чаще и интенсивнее двигаются в кресле, но при этом сидят неподвижно во время перестрелок и прочих игровых событий.
Работа над проектом началась в рамках курса Introduction to Internet of Things и инициативы Киберакадемии Сколтеха и продолжается в рамках грантов программы Сколтеха STRIP, РФФИ и киберспортивного стартапа Head Kraken.
Научная группа ученых Сколтеха, занимающихся исследованиями в области определения психоэмоционального состояния кибератлетов под руководством профессоров Андрея Сомова и Евгения Бурнаева, с 2018 года применяет датчики для комплексного сбора данных, а также методы машинного обучения для изучения психологического и физического состояния игроков. Для анализа используют данные о пульсе, сопротивлении кожи, направлении взгляда, движении рук, данные об окружающей среде (температура, влажность, уровень углекислого газа), игровой телеметрии и другие.
Бразильские зоологи выяснили, каких именно насекомых и пауков ловят домашние кошки в городах. Для этого использовали не полевые наблюдения, а анализ социальных сетей. Просмотрев более 17 000 видео и фото в TikTok и на фотостоке iStock, ученые нашли 550 записей кошачьей охоты. Самая частая добыча — кузнечики, сверчки, цикады и тараканы.
Чтобы охотиться при температурах ниже нуля, пауки рода Clubiona выработали особые белки-антифризы. Изучив членистоногих, собранных в грушевых садах неподалеку от города Брно (Чехия), ученые раскрыли молекулярный механизм, позволяющий этим паукам не впадать в зимнюю спячку.
Наблюдая за галактикой CANUCS-LRD-z8.6 с помощью космической обсерватории «Джеймс Уэбб», астрономы обнаружили в ее центре сверхмассивную черную дыру. Хотя она существовала всего через 500 миллионов лет после Большого взрыва, ее масса оказалась рекордной для столь ранней эпохи.
Человеческие языки разнообразны, но это разнообразие ограничивается повторяющимися закономерностями. Пытаясь описать правила, которым подчиняются различия в грамматике, лингвисты сформулировали ряд так называемых грамматических универсалий — утверждений, предположительно верных для всех или большинства языков мира. Международная команда ученых провела статистический анализ на материале 2430 языков и обнаружила, что соответствующими действительности можно считать около трети таких утверждений.
Так называемые зумеры и альфа, несмотря на молодой возраст, уже формируют ключевые поведенческие и потребительские тренды. Ученые Пермского Политеха рассказали, почему обозначение поколений начали с конца алфавита, как альфа и зумеры отличаются в способности к терпеливости, совмещении цифрового и реального «Я», подходу к профессиональной деятельности и отношении к финансам, какое мышление пришло на смену клиповому и как использование искусственного интеллекта повлияет на авторитет родителей.
Бразильские зоологи выяснили, каких именно насекомых и пауков ловят домашние кошки в городах. Для этого использовали не полевые наблюдения, а анализ социальных сетей. Просмотрев более 17 000 видео и фото в TikTok и на фотостоке iStock, ученые нашли 550 записей кошачьей охоты. Самая частая добыча — кузнечики, сверчки, цикады и тараканы.
Проанализировав данные наблюдений, полученных с помощью наземных обсерваторий за последние два десятилетия, астрономы обнаружили потенциально обитаемый мир — суперземлю Gliese 251 c (GJ 251 с). Планета обращается вокруг красного карлика на расстоянии около 18 световых лет от Земли и считается одним из самых перспективных кандидатов для поисков жизни.
Человеческие языки разнообразны, но это разнообразие ограничивается повторяющимися закономерностями. Пытаясь описать правила, которым подчиняются различия в грамматике, лингвисты сформулировали ряд так называемых грамматических универсалий — утверждений, предположительно верных для всех или большинства языков мира. Международная команда ученых провела статистический анализ на материале 2430 языков и обнаружила, что соответствующими действительности можно считать около трети таких утверждений.
По расчетам, большинство «гостей» из других звездных систем летят к Земле примерно со стороны созвездия Геркулес. Скорее всего, они время от времени падают на нашу планету, просто мы еще не научились это замечать. Как удалось вычислить, чаще всего они должны падать зимой и где-то в окрестностях экватора.
Вы попытались написать запрещенную фразу или вас забанили за частые нарушения.
Понятно
Из-за нарушений правил сайта на ваш аккаунт были наложены ограничения. Если это ошибка, напишите нам.
Понятно
Наши фильтры обнаружили в ваших действиях признаки накрутки. Отдохните немного и вернитесь к нам позже.
Понятно
Мы скоро изучим заявку и свяжемся с Вами по указанной почте в случае положительного исхода. Спасибо за интерес к проекту.
Понятно

Последние комментарии