• Добавить в закладки
  • Facebook
  • Twitter
  • Telegram
  • VK
  • Печать
  • Email
  • Скопировать ссылку
12.09.2019, 21:34
Сколтех
16 989

Предсказуемый киберспорт: движения в кресле позволяют отличить профессионального игрока от любителя

Группа молодых ученых из Центра Сколтеха по научным и инженерным вычислительным технологиям для задач с большими массивами данных (CDISE) c помощью искусственного интеллекта определила, как движения в кресле могут выдать в киберигроке профессионала.

Киберспортсмены
Киберспортсмены / ©geekplus.ru / Автор: Александр Литвинов

Методы машинного обучения успешно предсказывают мастерство игрока в 77 % случаев. Результаты работы были представлены на престижном форуме — V международной конференции IEEE по проблемам Интернета людей (IoP 2019), где получили приз за лучшую научную работу.

За последние несколько лет киберспорт прошел путь от видеоигр для школьников до целой спорт-индустрии c профессиональными командами, тренерами и большими инвестициями. Как и в любом другом спорте, кибератлеты бывают профессионалами и любителями, и понимание того, как отличить одних от других, важно для оптимизации тренировочного процесса.

Студенты-магистры из Сколтеха (Москва), МФТИ (Москва) и ГУАП (Cанкт-Петербург) под руководством профессоров Сколтеха Андрея Сомова и Евгения Бурнаева решили найти связь между эффективностью кибератлета в игре и характером его движений в кресле.

«Мы предположили, что между “стилем” движения игрока в кресле и его мастерством есть связь. В то же время было интересно посмотреть, как игроки реагируют на игровые события (когда игрок убивает, умирает, или идет перестрелка). Вряд ли профессиональные игроки и новички реагируют одинаково», — рассказывает первый автор исследования, магистрант Сколтеха Антон Смердов.

Для эксперимента были приглашены 19 игроков разных уровней: девять профессионалов и десять любителей. Мастерство игроков оценивали аналогично тому, как измеряют мастерство пилотов —наигранными часами. Всем было предложено играть в популярную видеоигру Counter-Strike: Global Offensive (CS:GO) от получаса до часа. Для сбора данных использовались акселерометр и гироскоп, интегрированные в кресло.

«Полученные данные были порезаны на трехминутные сессии, так как трех минут движений в кресле достаточно, чтобы понять поведение игрока. В то же время это увеличивает выборку для обучения алгоритмов», — поясняет Антон Смердов.

Из каждой сессии ученые извлекали паттерны, по которым можно оценивать поведение игрока: с какой частотой и интенсивностью он двигается или крутится в кресле для каждой из трех осей и как часто откидывается на спинку кресла. Суммарно для всех временных интервалов получился 31 паттерн на каждого игрока. С помощью методов статистики выделили восемь самых важных признаков и применили к ним методы машинного обучения.

Лучше всего сработал популярный метод Random Forest, продемонстрировавший семидесятисемипроценую точность при определении уровня мастерства по трехминутной сессии. Также полученные результаты показали, что профессиональные игроки в целом чаще и интенсивнее двигаются в кресле, но при этом сидят неподвижно во время перестрелок и прочих игровых событий.

Работа над проектом началась в рамках курса Introduction to Internet of Things и инициативы Киберакадемии Сколтеха и продолжается в рамках грантов программы Сколтеха STRIP, РФФИ и киберспортивного стартапа Head Kraken.

Научная группа ученых Сколтеха, занимающихся исследованиями в области определения психоэмоционального состояния кибератлетов под руководством профессоров Андрея Сомова и Евгения Бурнаева, с 2018 года применяет датчики для комплексного сбора данных, а также методы машинного обучения для изучения психологического и физического состояния игроков. Для анализа используют данные о пульсе, сопротивлении кожи, направлении взгляда, движении рук, данные об окружающей среде (температура, влажность, уровень углекислого газа), игровой телеметрии и другие.

Нашли опечатку? Выделите фрагмент и нажмите Ctrl + Enter.
Сколковский институт науки и технологий — негосударственный технологический университет, расположенный в инновационном центре Сколково. Институт был создан в 2011 году при поддержке Массачусетского технологического института. Модель института предусматривает тесную интеграцию технологического образования, исследовательской работы и предпринимательских навыков. Институт ведёт обучение по программам магистратуры и PhD, рабочий язык — английский.
Подписывайтесь на нас в Telegram, Яндекс.Новостях и VK
Предстоящие мероприятия
16 сентября, 13:21
Адель Романова

Во время недавних наблюдений карликовой планеты Квавар что-то неожиданно почти полностью закрыло ее собой. Астрономы уверены, что это не ее спутник Вейвот и не одно из двух известных колец этого маленького мира на краю Солнечной системы.

15 сентября, 10:36
Игорь Байдов

Самая большая планета в Солнечной системе, всегда поражавшая воображение своими колоссальными размерами, немного сдала позиции. Новые высокоточные измерения орбитального зонда NASA показали, что Юпитер не такой большой и круглый, как считали астрономы последние 40 лет.

15 сентября, 11:30
РНФ

Ученые обнаружили, что общепринятые константы, с помощью которых химики предсказывают свойства молекул, содержали ошибки. Исправленные значения констант теперь объясняют ранее непонятные химические аномалии и позволяют предсказывать свойства новых материалов для квантовых технологий, датчиков и умных покрытий.

12 сентября, 14:03
ТюмГУ

Исследования самодержавия могут пролить свет на феномен, исконно свойственный российской государственности, а значит, переосмыслить исторический путь России и выработку новых направлений развития, к такому выводу пришел ученый ТюмГУ.

15 сентября, 10:36
Игорь Байдов

Самая большая планета в Солнечной системе, всегда поражавшая воображение своими колоссальными размерами, немного сдала позиции. Новые высокоточные измерения орбитального зонда NASA показали, что Юпитер не такой большой и круглый, как считали астрономы последние 40 лет.

15 сентября, 11:30
РНФ

Ученые обнаружили, что общепринятые константы, с помощью которых химики предсказывают свойства молекул, содержали ошибки. Исправленные значения констант теперь объясняют ранее непонятные химические аномалии и позволяют предсказывать свойства новых материалов для квантовых технологий, датчиков и умных покрытий.

12 сентября, 14:03
ТюмГУ

Исследования самодержавия могут пролить свет на феномен, исконно свойственный российской государственности, а значит, переосмыслить исторический путь России и выработку новых направлений развития, к такому выводу пришел ученый ТюмГУ.

9 сентября, 11:03
Адель Романова

Третий известный межзвездный объект 3I/ATLAS летит примерно вдвое быстрее обоих своих предшественников. По расчетам, его вряд ли могло выбросить из родной планетной системы с подобной скоростью, и так разогнаться по пути он тоже не мог.

11 сентября, 12:04
ПНИПУ

Все больше покупателей начинают отказываться от привычки делать покупки на маркетплейсах, а число новых продавцов на площадках практически не увеличилось. Аналитика показывает, что за первый квартал 2025 года — прирост селлеров составил всего 0,45% по сравнению с аналогичным периодом прошлого года. В то же время, маркетплейсы активно расширяют сеть пунктов выдачи, особенно в регионах, где физическое присутствие всех брендов невозможно. Ученые Пермского Политеха рассказали, почему люди стали реже совершать покупки на маркетплейсах.

[miniorange_social_login]

Комментарии

Написать комментарий
Подтвердить?
Подтвердить?
Причина отклонения
Подтвердить?
Не получилось опубликовать!

Вы попытались написать запрещенную фразу или вас забанили за частые нарушения.

Понятно
Жалоба отправлена

Мы обязательно проверим комментарий и
при необходимости примем меры.

Спасибо
Аккаунт заблокирован!

Из-за нарушений правил сайта на ваш аккаунт были наложены ограничения. Если это ошибка, напишите нам.

Понятно
Что-то пошло не так!

Наши фильтры обнаружили в ваших действиях признаки накрутки. Отдохните немного и вернитесь к нам позже.

Понятно
Лучшие материалы
Закрыть
Войти
Регистрируясь, вы соглашаетесь с правилами использования сайта и даете согласие на обработку персональных данных.
Ваша заявка получена

Мы скоро изучим заявку и свяжемся с Вами по указанной почте в случае положительного исхода. Спасибо за интерес к проекту.

Понятно