• Добавить в закладки
  • Facebook
  • Twitter
  • Telegram
  • VK
  • Печать
  • Email
  • Скопировать ссылку
18.06.2014, 11:48
Редакция Naked Science
10,4 тыс

Квантовые компьютеры: принципы работы

❋ 3.7

Специалисты предсказывают, что вскоре на смену обычным компьютерам придут квантовые, по мощности превосходящие современные вычислительные системы в несколько раз. Но что же из себя представляют квантовые компьютеры?

Квантовые компьютеры: принципы работы – иллюстрация к материалу на Naked Science
©Wikipedia / Автор: Plinia Abito

По прогнозам экспертов уже совсем скоро, лет через 10, микросхемы в компьютерах достигнут атомных измерений. Представляется логичным, что грядет эпоха квантовых компьютеров, с помощью которых скорость вычислительных систем может повыситься на несколько порядков.

Идея квантовых компьютеров сравнительно нова: в 1981 году Пол Бениофф впервые теоретически описал принципы работы квантовой машины Тьюринга.

В 1930-х Алан Тьюринг впервые описал теоретическое устройство, представляющее собой бесконечную ленту, разделенную на маленькие ячейки. Каждая ячейка может содержать в себе символ 1 или 0, или же остается пустой.

Управляющее устройство перемещается по ленте, считывая символы и записывая новые. Из набора таких символов составляется программа, которую машина должна выполнить.

В квантовой машине Тьюринга, предложенной Бениоффом, принципы работы остаются теми же, с той разницей, что как лента, так и управляющее устройство находятся в квантовом состоянии.

Это значит, что символы на ленте могут быть не только 0 и 1, но и суперпозициями обоих чисел, т. е. 0 и 1 одновременно. Таким образом, если классическая машина Тьюринга способна одновременно исполнять лишь одно вычисление, то квантовая занимается несколькими вычислениями параллельно.

Сегодняшние компьютеры работают по тому же принципу, что и нормальные машины Тьюринга – с битами, которые находятся в одном из двух состояний: 0 или 1. У квантовых компьютеров таких ограничений нет: информация в них зашифрована в квантовых битах (кубитах), которые могут содержать суперпозиции обоих состояний.

Квантовые компьютеры: принципы работы – иллюстрация к материалу на Naked Science
Работа над частью квантового компьютера D-Wave / ©D-Wave Systems 

Физическими системами, реализующими кубиты, могут быть атомы, ионы, фотоны или электроны, имеющие два квантовых состояния. Фактически, если сделать элементарные частицы носителями информации, с помощью них можно построить компьютерную память и процессоры нового поколения.

Благодаря суперпозиции кубитов квантовые компьютеры изначально рассчитаны на выполнение параллельных вычислений. Этот параллелизм, по мнению физика Дэвида Дойча, позволяет квантовым компьютерам выполнять одновременно миллионы вычислений, в то время, как современные процессоры работают лишь с одним единственным.

30-кубитный квантовый компьютер по мощности будет равен суперкомпьютеру, работающему с производительностью 10 терафлопс (триллион операций в секунду). Мощность современных настольных компьютеров измеряется всего лишь гигафлопсах (миллиард операций в секунду).

Другое важное квантовомеханическое явление, которое может быть задействовано в квантовых компьютерах, называется «запутанностью». Основная проблема считывания информации из  квантовых частиц заключается в том, что в процессе измерения они могут изменить свое состояние, причем совершенно непредсказуемым образом.

Фактически, если считать информацию с кубита, находящегося в состоянии суперпозиции, получим лишь 0 или 1, но никогда не оба числа одновременно. А это значит, что вместо квантового, мы будем иметь дело с нормальным классическим компьютером.

Чтобы решить эту проблему, ученые должны использовать такие измерения, которые не разрушают квантовую систему. Квантовая запутанность предоставляет потенциальное решение.

В квантовой физике, если приложить внешнюю силу к двум атомам, их можно «запутать» вместе таким образом, что один из атомов будет обладать свойствами другого. Это, в свою очередь, приведет к тому, что, например,  измеряя спин одного атома, его «запутанный» близнец сразу примет противоположный спин.

Такое свойство квантовых частиц позволяет физикам узнать значение кубита, не измеряя его непосредственно.

В один прекрасный день квантовые компьютеры могут заменить кремниевые чипы, подобно тому, как транзисторы пришли на смену вакуумным трубкам. Однако современные технологии пока еще не позволяют строить полноценные квантовые компьютеры.

Квантовые компьютеры: принципы работы – иллюстрация к материалу на Naked Science
Сборка процессора квантового компьютера D-Wave Two / ©D-Wave Systems

Тем не менее, с каждым годом исследователи объявляют о новых достижениях в области квантовых технологий, и надежда, что когда-нибудь квантовые компьютеры смогут превзойти обычные, продолжает крепнуть.

1998

Исследователям из Массачусетского технологического института удалось впервые распределить один кубит между тремя ядерными спинами в каждой молекуле жидкого аланина или молекулы трихлороэтилена. Такое распределение позволило использовать «запутанность» для неразрушающего анализа квантовой информации.

2000

В марте ученые из Национальной лаборатории в Лос Аламосе объявили о создании 7-кубитного квантового компьютера в одной единственной капле жидкости.

2001

Демонстрация вычисления алгоритма Шора специалистами из IBM и Стэнфордского университета на 7-кубитном квантовом компьютере.

2005

В институте квантовой оптики и квантовой информации при Иннсбрукском университете впервые удалось создать кубайт (сочетание 8 кубитов) с помощью ионных ловушек.

2007

Канадская компания D-Wave продемонстрировала первый 16-кубитный квантовый компьютер, способный решать целый ряд задач и головоломок, типа судоку.

С 2011 года D-Wave предлагает за $11 млн долларов квантовый компьютер D-Wave One с 128-кубитным чипсетом, который выполняет только одну задачу – дискретную оптимизацию.

Нашли опечатку? Выделите фрагмент и нажмите Ctrl + Enter.
Подписывайтесь на нас в Telegram, Яндекс.Новостях и VK
Предстоящие мероприятия
27 ноября, 11:05
Игорь Байдов

Долгое время ученые полагали, что сотни гигантских статуй на острове Пасхи создали представители местной общины под руководством одного вождя. Однако авторы нового исследования поставили эту гипотезу под сомнение. Детальная трехмерная карта главного каменного карьера острова указала на более сложную картину. Вероятно, монументы были плодом творчества и соперничества небольших независимых групп.

26 ноября, 12:39
Игорь Байдов

Что стало настоящим фундаментом власти — умение обрабатывать землю или контроль над некоторыми культурными растениями? Авторы нового исследования пришли к выводу, что появление первых крупных сообществ и государств зависело не от земледелия в целом, а от выращивания определенных злаков. Эти культуры было легко хранить и, еще важнее, невероятно просто облагать налогом, что и дало толчок появлению цивилизации.

26 ноября, 13:12
Александр Березин

Гамма-излучение, зафиксированное гамма-телескопом «Ферми», по мнению исследователя, может объясняться только распадом вимпов, частиц темной материи, в существовании которых множество других физиков уже разуверились. Если независимые проверки подтвердят открытие, это может существенно изменить космологическую картину мира.

21 ноября, 10:02
ПНИПУ

Так называемые зумеры и альфа, несмотря на молодой возраст, уже формируют ключевые поведенческие и потребительские тренды. Ученые Пермского Политеха рассказали, почему обозначение поколений начали с конца алфавита, как альфа и зумеры отличаются в способности к терпеливости, совмещении цифрового и реального «Я», подходу к профессиональной деятельности и отношении к финансам, какое мышление пришло на смену клиповому и как использование искусственного интеллекта повлияет на авторитет родителей.

26 ноября, 16:18
ФизТех

Коллектив российских ученых из МИРЭА — Российского технологического университета, Центра фотоники двумерных материалов МФТИ, Института металлургии и материаловедения им. А. А. Байкова РАН и ряда других ведущих научных центров провел глубокое исследование кристаллической структуры широко используемых пьезоэлектрических материалов на основе цирконата-титаната свинца. Используя метод рентгеноструктурного анализа, исследователи впервые смогли в деталях установить, как небольшие химические добавки кардинально меняют фазовый состав керамики и напрямую определяют ее электрофизические характеристики. Это открывает путь к целенаправленному дизайну «умных» материалов с заранее заданными свойствами для передовой электроники и сенсорики.

26 ноября, 17:00
Курчатовский институт

Фосфор – элемент, играющий ключевую роль в росте растений. В сельском хозяйстве он используется в составе многих минеральных удобрений. В то же время фосфор, содержащийся в сточных водах — серьезный загрязнитель, который при попадании в водоемы нарушает баланс экосистем и вызывает цветение водорослей. Ученые Национального исследовательского центра «Курчатовский институт» и Южного федерального университета предложили новый экологичный способ выделения фосфора из сточных вод с помощью фотосинтезирующих микроорганизмов.

20 ноября, 13:12
Полина Меньшова

Человеческие языки разнообразны, но это разнообразие ограничивается повторяющимися закономерностями. Пытаясь описать правила, которым подчиняются различия в грамматике, лингвисты сформулировали ряд так называемых грамматических универсалий — утверждений, предположительно верных для всех или большинства языков мира. Международная команда ученых провела статистический анализ на материале 2430 языков и обнаружила, что соответствующими действительности можно считать около трети таких утверждений.

8 ноября, 18:29
Адель Романова

По расчетам, большинство «гостей» из других звездных систем летят к Земле примерно со стороны созвездия Геркулес. Скорее всего, они время от времени падают на нашу планету, просто мы еще не научились это замечать. Как удалось вычислить, чаще всего они должны падать зимой и где-то в окрестностях экватора.

12 ноября, 10:47
Максим Абдулаев

Ученые открыли новый, ранее неизвестный способ передвижения бактерий по поверхностям, для которого не нужны жгутики. Эти микроорганизмы на краю колонии переваривают сахара, выделяют метаболиты и создают осмотическое давление. Оно вызывает микроскопическое «цунами», и на нем бактерии катятся вперед.

[miniorange_social_login]

Комментарии

Написать комментарий
Подтвердить?
Подтвердить?
Причина отклонения
Подтвердить?
Не получилось опубликовать!

Вы попытались написать запрещенную фразу или вас забанили за частые нарушения.

Понятно
Жалоба отправлена

Мы обязательно проверим комментарий и
при необходимости примем меры.

Спасибо
Аккаунт заблокирован!

Из-за нарушений правил сайта на ваш аккаунт были наложены ограничения. Если это ошибка, напишите нам.

Понятно
Что-то пошло не так!

Наши фильтры обнаружили в ваших действиях признаки накрутки. Отдохните немного и вернитесь к нам позже.

Понятно
Лучшие материалы
Закрыть
Войти
Регистрируясь, вы соглашаетесь с правилами использования сайта и даете согласие на обработку персональных данных.
Ваша заявка получена

Мы скоро изучим заявку и свяжемся с Вами по указанной почте в случае положительного исхода. Спасибо за интерес к проекту.

Понятно