• Добавить в закладки
  • Facebook
  • Twitter
  • Telegram
  • VK
  • Печать
  • Email
  • Скопировать ссылку
13.10.2016
Редакция Naked Science
2
462

Физики научились многомерным вычислениям от противного

Британские ученые разработали метод Монте-Карло на основе оценочной функции Беннета для многих состояний и использовали его для решения задачи в 93-мерном пространстве. Результаты работы представлены в Physical Review E.

2000px-9-cube_column_graph
©Wikipedia / Автор: Milonia Larcius

Метод Монте-Карло представляет собой группу численных методов для решения задач с множеством случайных переменных. В качестве такой задачи может выступать динамическая модель разрушения экосистемы, например обезлесения, или прогнозирование нагрузки на электросети в зависимости от уровней потребления. Кроме того, метод Монте-Карло используется для оценки вероятности возникновения жизни вне Земли.

 

Главным ограничением таких методов является проклятие размерности, которое применяется в отношении многомерных пространств. Иллюстрацией феномена может служить емкость со 100 рисовыми зернами. Перемешивание зерен оставит неизменным их число, но может повлиять на свойства и как минимум пространственные отношения. Прогноз взаимовлияния таких переменных актуален для машинного обучения, нейросетей и других направлений.

 

Для преодоления проклятия размерности используется полный перебор. В случае с рисом он означал бы многократное перемешивание зерен с фиксацией результатов и их вероятностным прогнозированием. Другой способ предполагает рекуррентное измерение средних расстояний между элементами энергетического ландшафта — диапазона возможных состояний, — в котором есть некие бассейны притяжения, то есть множества траекторий, к которым притягиваются другие траектории.

 

В новой работе ученые использовали с этой целью оценочную функцию Беннета для многих состояний (Multistate Bennett acceptance ratio, MBAR), которая широко применяется в биомолекулярном моделировании. На первом этапе они также описывали энергетический ландшафт модели, но вместо оценки среднего объема разных бассейнов притяжения алгоритм систематически оценивал наименее вероятные и далекие пределы одного бассейна.

 

Метод тестировался на модифицированной задаче о плотной упаковке — известной задаче комбинаторной геометрии. Ученые смоделировали гипотетическую 93-мерную систему из 32 мягких сфер, которые могут быть упакованы различными способами, и нашли наиболее оптимальный из них. Отмечается, что вероятность случайного обнаружения такого способа в рамках задачи составляла 1 на 10 дуотригинтиллионов, или 1 на 1099.

 

«Этот алгоритм достигает тех значений, которые недоступны методу “грубой силы”. Если бы вы применили его, то никогда бы не закончили», — сообщил соавтор работы Стефано Мартиниани (Stefano Martiniani). Он добавил, что новый метод расширяет репертуар инструментов для решения задач в многомерном пространстве. Основной трудностью, по словам ученого, остаются ограниченные вычислительные мощности, необходимые для моделирования энергетических ландшафтов.

Нашли опечатку? Выделите фрагмент и нажмите Ctrl + Enter.
Подписывайтесь на нас в Telegram, Яндекс.Новостях и VK
Позавчера, 14:24
Игорь Байдов

Команда китайских инженеров разработала модель магнитоэлектрического генератора, способного эффективно преобразовывать энергию падающих капель в электричество. Устройство может быть полезно для районов с повышенной сезонной влажностью. Разработка ученых в теории выглядит перспективно, но вызывает некоторые вопросы. В частности, пока не ясно, можно ли найти ей практическое применение.

3 часа назад
Полина Меньшова

Сидячий образ жизни часто называют «новым курением», поскольку отсутствие физической активности и работа в неудобных позах приводит к большому количеству проблем со здоровьем. В связи с этим появился тренд на столы для работы стоя. Исследователи из США изучили разные типы рабочих мест и оценили их эффективность — как для здоровья сотрудников, так и для производительности.

Вчера, 19:04
Александр Березин

По уточненным данным, для свода Международной космической станции с орбиты компания Илона Маска использует сильно измененный грузовой корабль, имеющий рекордно большое количество двигателей (больше, чем у любого другого корабля в истории). Однако это не будет Starship, хотя для него такая задача в теории была бы проще.

15 июля
Александр Березин

Авторы нового исследования впервые показали, что круглые провалы в лунной поверхности не просто близки к многокилометровым пещерам на естественном спутнике Земли, но и располагают тоннелями, ведущими в глубину.

16 июля
Александр Березин

Традиционное представление о роли человека в земных экосистемах известно: он нарушает их нормальную работу и снижает биоразнообразие. Однако первая попытка изучить следы пыльцы за последние 12 тысяч лет принесла скорее противоположные данные — как минимум для континентов, полностью расположенных в Северном полушарии.

13 июля
Татьяна

Все клеточные организмы ученые ведут от гипотетического предка — LUCA. Существует масса предположений и расчетов о том, как он был устроен, где и когда возник. В новой работе исследователи из Великобритании попытались ответить на эти вопросы.

25 июня
Игорь Байдов

Ученые из Китая и Бельгии воссоздали в лаборатории условия, существовавшие на Меркурии четыре миллиарда лет назад, и выяснили, что они были идеальными для образования слоя алмазов, который с течением времени становился лишь толще.

21 июня
Nadya

Земля начала формироваться примерно 4,5 миллиарда лет назад. Чтобы понять, как это происходило в ранние периоды развития нашей планеты, ученые ищут образцы древних горных пород. Одну из таких, возрастом почти 3,5 миллиарда лет, обнаружили рядом с городом Колли в Австралии.

1 июля
Александр Березин

Необычный биологический вид, по оценке авторов новой научной работы, пригоден для заселения четвертой планеты без каких-либо предварительных условий — уже в том виде, в котором он существует сейчас. Поскольку речь идет о фотосинтетическом организме, он способен нарабатывать существенное количество кислорода. Интересно, что кандидат на терраформирование Марса сохранил жизнеспособность после месяца в жидком азоте.

[miniorange_social_login]

Комментарии

2 Комментария
YouTube.com/FourthDimension
Даша2000
14.10.2016
-
0
+
Вот эта статья изложена автором очень правильно. Я не математик, но буквально все поняла!
Подтвердить?
Подтвердить?
Причина отклонения
Подтвердить?
Не получилось опубликовать!

Вы попытались написать запрещенную фразу или вас забанили за частые нарушения.

Понятно
Жалоба отправлена

Мы обязательно проверим комментарий и
при необходимости примем меры.

Спасибо
Аккаунт заблокирован!

Из-за нарушений правил сайта на ваш аккаунт были наложены ограничения. Если это ошибка, напишите нам.

Понятно
Что-то пошло не так!

Наши фильтры обнаружили в ваших действиях признаки накрутки. Отдохните немного и вернитесь к нам позже.

Понятно
Лучшие материалы
Войти
Регистрируясь, вы соглашаетесь с правилами использования сайта и даете согласие на обработку персональных данных.
Ваша заявка получена

Мы скоро изучим заявку и свяжемся с Вами по указанной почте в случае положительного исхода. Спасибо за интерес к проекту.

Понятно
Ваше сообщение получено

Мы скоро прочитаем его и свяжемся с Вами по указанной почте. Спасибо за интерес к проекту.

Понятно