• Добавить в закладки
  • Facebook
  • Twitter
  • Telegram
  • VK
  • Печать
  • Email
  • Скопировать ссылку
25.11.2020, 13:29
Василий Парфенов
8,7 тыс

Американская лаборатория вплотную подошла к зажиганию плазмы в управляемой термоядерной реакции

❋ 6.0

Сотрудникам Национального комплекса лазерных термоядерных реакций США (National Ignition Facility, NIF) удалось в серии последовательных экспериментов достичь энерговыделения плазмы свыше 60 килоджоулей. Это как никогда близко к ключевому порогу, при котором реакция синтеза будет самоподдерживающейся.

Вакуумная камера NIF, в которой специалисты проводят монтаж оборудования
Вакуумная камера NIF, в которой специалисты проводят монтаж оборудования / ©Lawrence Livermore National Laboratory (LLNL) / Автор: Sycophanta Duccius

Об успехах ядерщиков сообщили на встрече Отдела физики плазмы Американского физического общества (American Physical Society’s Division of Plasma Physics). Также об этом пишет портал Sciencemag (новостной сайт Американской ассоциации достижений науки — AAAS), ссылаясь на Марка Херрманна (Mark Herrmann), заведующего всей программой исследований управляемого термоядерного синтеза (УТС) в Ливерморской национальной лаборатории имени Лоуренса, где расположен комплекс NIF.

По словам Херрманна, в недавнем эксперименте удалось существенно превысить порог в 60 килоджоулей, а эта цифра — устойчиво повторяемый результат. Ближайшие «выстрелы» установки NIF помогут понять, насколько ученые близки к заветному пределу в 100 килоджоулей. Согласно расчетам, именно на этой отметке энерговыделения у ливерморских специалистов получится создать самоподдерживающуюся термоядерную реакцию, то есть зажечь плазму. Большим достижением будет и несколько меньший выход энергии (70-90 килоджоулей), при котором «горение» еще не начнется, но уже будет происходить саморазогрев плазмы.

Национальный комплекс лазерных термоядерных реакций запустили в 2010 году, и с тех пор эта установка произвела около трех тысяч «выстрелов» своими почти двумя сотнями лазеров. Первоначальное предназначение NIF — эксперименты по созданию и поддержанию управляемых реакций синтеза. В «сердце» комплекса расположена вакуумная камера, куда помещают специальные мишени с термоядерным топливом (дейтерий плюс тритий). Их облучают чрезвычайно мощными и кратковременными импульсами ультрафиолетового лазера, что приводит к резкому сжатию и нагреву топлива, в котором возникает реакция синтеза ядер.

Одна из особенностей установки NIF — используемая технология обжатия и разогрева плазмы. Капсула с топливом облучается лазерами не напрямую: их импульсы нацелены на специальный контейнер — хольраум (hohlraum). Он сделан из золота и при резком нагреве испускает рентгеновское излучение. Форма контейнера рассчитана так, чтобы все это излучение падало равномерно со всех сторон на капсулу с топливом. Та, в свою очередь, резко испаряется, и в результате дейтерий с тритием оказываются одновременно сильно сжаты и нагреты до миллионов градусов. Итогом всего процесса должна стать термоядерная реакция, которая длится несколько мгновений.

Диаграмма достигнутых в NIF параметров плазмы
Диаграмма достигнутых в NIF параметров плазмы. По вертикали отмечена температура в центре облака плазмы в миллионах градусов Цельсия, по горизонтали — давление в нем (грамм на сантиметр квадратный). Зеленая зона — кампания 2011-2012 годов, капсула с топливом изготавливалась из пластика, а обжатие выполняли по медленной схеме; голубая — 2013-2015 годы, пластиковая капсула и быстрое обжатие; оранжевая — 2017-2019 годы, большая алмазная капсула и обжатие длинными импульсами по сложной схеме / ©PATEL, LLNL

Несмотря на кажущуюся простоту описанных процессов, заставить эту схему хорошо работать получилось только в формате бомбы. Каждый последующий эксперимент по управляемому термоядерному синтезу демонстрирует все новые сложности с ограничениями. Например, в первые три года после запуска NIF на установке удалось достичь энерговыделения плазмы всего лишь в один килоджоуль. При этом мощность рентгеновского потока в хольрауме достигала 21 килоджоуля, а лазерный импульс для его производства вовсе имел мощность 1,8 мегаджоуля. Вопреки всем теоретическим расчетам разогреву плазмы мешали ранее неучтенные факторы — от микрометровых неровностей на капсуле с топливом до искажения пучка рентгеновского излучения поддерживающими мишень проводами.

Такие удручающие результаты не могли не сказаться на репутации всей программы исследований управляемого термоядерного синтеза. Тем более что постройка Национального комплекса лазерных термоядерных реакций обошлась американским налогоплательщикам в четыре миллиарда долларов (в четыре раза больше изначального бюджета). После того как в первой кампании экспериментов команде NIF не удалось достичь запланированных результатов, вся судьба проекта оказалась под вопросом. Финансирование комплекса урезали, а его ресурсы перенаправили на другие исследования.

В последние годы «выстрелы» установки распределяются следующим образом: примерно 10% производятся в рамках фундаментальных физических исследований, еще 30% уходят на эксперименты по управляемому термоядерному синтезу, а остальные выполняют в интересах военных, которым необходимо симулировать взрывы термоядерных бомб для проверки надежности боеголовок. При этом нельзя сказать, что сотрудники NIF ничего не добились на поприще УТС.

Еще в 2013 году при анализе экспериментов, когда энерговыделение плазмы составляло скромные 10-14 килоджоулей, выяснили, что топливо поглотило меньше энергии в виде рентгеновского излучения, чем произвела реакция синтеза. Это был серьезный успех, хоть и не такой оглушительный, как планировалось. Впоследствии комплекс существенно доработали, добавив детекторы в вакуумную камеру и нарастив мощность лазеров. Таким образом удалось хорошо изучить поведение мишени внутри хольраума во время облучения и возникновения реакции.

Схема Национального комплекса лазерных термоядерных реакций США
Схема Национального комплекса лазерных термоядерных реакций США. 192 лазера многократно усиливаются и направляются в вакуумную камеру с мишенью в ней / ©LLNL

Итоговые улучшения на всех этапах экспериментов привели к значительному повышению энерговыделения плазмы. Для этого потребовалось изменить схему работы лазеров, которые теперь не облучают мишень одновременно, а испускают импульсы последовательно по сложной схеме. Также повысили точность изготовления самого хольраума и провели серию опытов с разными материалами капсулы для топлива. На основе всей работы за прошедшие десять лет Марк Херрманн предсказывает зажигание плазмы в следующей кампании экспериментов.

Получится у американских ученых достичь заветного рубежа термоядерной энергетики или нет — покажет время. Пока на всех фронтах освоения управляемого синтеза продвижение идет вяло. Уж слишком много проблем возникает при попытках «оседлать» фундаментальные физические процессы Вселенной. И несмотря на все модели и предсказания, каждый следующий эксперимент может преподнести сюрприз, ставящий жирный крест на радужных перспективах. История Национального комплекса лазерных термоядерных реакций — лишнее тому подтверждение.

Нашли опечатку? Выделите фрагмент и нажмите Ctrl + Enter.
mostly harmless Есть телега: https://t.me/tempest_exults
Подписывайтесь на нас в Telegram, Яндекс.Новостях и VK
Предстоящие мероприятия
26 ноября, 12:39
Игорь Байдов

Что стало настоящим фундаментом власти — умение обрабатывать землю или контроль над некоторыми культурными растениями? Авторы нового исследования пришли к выводу, что появление первых крупных сообществ и государств зависело не от земледелия в целом, а от выращивания определенных злаков. Эти культуры было легко хранить и, еще важнее, невероятно просто облагать налогом, что и дало толчок появлению цивилизации.

27 ноября, 11:05
Игорь Байдов

Долгое время ученые полагали, что сотни гигантских статуй на острове Пасхи создали представители местной общины под руководством одного вождя. Однако авторы нового исследования поставили эту гипотезу под сомнение. Детальная трехмерная карта главного каменного карьера острова указала на более сложную картину. Вероятно, монументы были плодом творчества и соперничества небольших независимых групп.

26 ноября, 13:12
Александр Березин

Гамма-излучение, зафиксированное гамма-телескопом «Ферми», по мнению исследователя, может объясняться только распадом вимпов, частиц темной материи, в существовании которых множество других физиков уже разуверились. Если независимые проверки подтвердят открытие, это может существенно изменить космологическую картину мира.

21 ноября, 10:02
ПНИПУ

Так называемые зумеры и альфа, несмотря на молодой возраст, уже формируют ключевые поведенческие и потребительские тренды. Ученые Пермского Политеха рассказали, почему обозначение поколений начали с конца алфавита, как альфа и зумеры отличаются в способности к терпеливости, совмещении цифрового и реального «Я», подходу к профессиональной деятельности и отношении к финансам, какое мышление пришло на смену клиповому и как использование искусственного интеллекта повлияет на авторитет родителей.

26 ноября, 16:18
ФизТех

Коллектив российских ученых из МИРЭА — Российского технологического университета, Центра фотоники двумерных материалов МФТИ, Института металлургии и материаловедения им. А. А. Байкова РАН и ряда других ведущих научных центров провел глубокое исследование кристаллической структуры широко используемых пьезоэлектрических материалов на основе цирконата-титаната свинца. Используя метод рентгеноструктурного анализа, исследователи впервые смогли в деталях установить, как небольшие химические добавки кардинально меняют фазовый состав керамики и напрямую определяют ее электрофизические характеристики. Это открывает путь к целенаправленному дизайну «умных» материалов с заранее заданными свойствами для передовой электроники и сенсорики.

26 ноября, 17:00
Курчатовский институт

Фосфор – элемент, играющий ключевую роль в росте растений. В сельском хозяйстве он используется в составе многих минеральных удобрений. В то же время фосфор, содержащийся в сточных водах — серьезный загрязнитель, который при попадании в водоемы нарушает баланс экосистем и вызывает цветение водорослей. Ученые Национального исследовательского центра «Курчатовский институт» и Южного федерального университета предложили новый экологичный способ выделения фосфора из сточных вод с помощью фотосинтезирующих микроорганизмов.

20 ноября, 13:12
Полина Меньшова

Человеческие языки разнообразны, но это разнообразие ограничивается повторяющимися закономерностями. Пытаясь описать правила, которым подчиняются различия в грамматике, лингвисты сформулировали ряд так называемых грамматических универсалий — утверждений, предположительно верных для всех или большинства языков мира. Международная команда ученых провела статистический анализ на материале 2430 языков и обнаружила, что соответствующими действительности можно считать около трети таких утверждений.

8 ноября, 18:29
Адель Романова

По расчетам, большинство «гостей» из других звездных систем летят к Земле примерно со стороны созвездия Геркулес. Скорее всего, они время от времени падают на нашу планету, просто мы еще не научились это замечать. Как удалось вычислить, чаще всего они должны падать зимой и где-то в окрестностях экватора.

12 ноября, 10:47
Максим Абдулаев

Ученые открыли новый, ранее неизвестный способ передвижения бактерий по поверхностям, для которого не нужны жгутики. Эти микроорганизмы на краю колонии переваривают сахара, выделяют метаболиты и создают осмотическое давление. Оно вызывает микроскопическое «цунами», и на нем бактерии катятся вперед.

[miniorange_social_login]

Комментарии

Написать комментарий
Подтвердить?
Подтвердить?
Причина отклонения
Подтвердить?
Не получилось опубликовать!

Вы попытались написать запрещенную фразу или вас забанили за частые нарушения.

Понятно
Жалоба отправлена

Мы обязательно проверим комментарий и
при необходимости примем меры.

Спасибо
Аккаунт заблокирован!

Из-за нарушений правил сайта на ваш аккаунт были наложены ограничения. Если это ошибка, напишите нам.

Понятно
Что-то пошло не так!

Наши фильтры обнаружили в ваших действиях признаки накрутки. Отдохните немного и вернитесь к нам позже.

Понятно
Лучшие материалы
Закрыть
Войти
Регистрируясь, вы соглашаетесь с правилами использования сайта и даете согласие на обработку персональных данных.
Ваша заявка получена

Мы скоро изучим заявку и свяжемся с Вами по указанной почте в случае положительного исхода. Спасибо за интерес к проекту.

Понятно