• Добавить в закладки
  • Facebook
  • Twitter
  • Telegram
  • VK
  • Печать
  • Email
  • Скопировать ссылку
05.01.2021
Василий Парфенов
9
6 802

Искусственный интеллект научился определять свойства любых молекул, решая уравнение Шредингера

8.0

Прорывной алгоритм может в разумные сроки и не привлекая суперкомпьютеры решать уравнение Шредингера для произвольных молекул. Это позволяет без трудоемких и затратных натурных экспериментов с большой вероятностью определять основные свойства вещества.

Искусственный интеллект научился определять свойства любых молекул решая уравнение Шредингера
Пример определения свойств молекулы циклобутадиена разными методами. PauliNet сравнивается с двумя вариантами связанных кластеров (MR-CC и CCSD), а также с экспериментальными данными / ©Hermann, J., Schätzle, Z. & Noé, F. Deep-neural-network solution of the electronic Schrödinger equation. Nat. Chem. 12, 891–897 (2020). https://doi.org/10.1038/s41557-020-0544-y

Разработку представили немецкие ученые из Свободного университета Берлина (Freie Universität Berlin). Особенности разработки и обучения глубинной нейронной сети PauliNet они описали в статье, которая была опубликована в рецензируемом журнале Nature Chemistry. Поскольку материал доступен только по подписке, его основные тезисы также можно изучить в препринте, размещенном на портале arXiv годом ранее. С тех пор научная работа была существенно дополнена, в том числе практическими результатами, но общее представление о технологии дает и предварительная публикация.

Алгоритм PauliNet получил свое название в честь принципа Паули — одного из фундаментальных правил квантовой механики. Согласно этому принципу, два и более электрона в атомах не могут находиться в одинаковых квантовых состояниях. То есть при обмене электронами их волновая функция меняет знак. Эта антисимметрия, а также ряд других постулатов квантовой физики были «зашиты» в глубинную нейросеть (Deep neural network) сразу. А вот обучали ее уже другим свойствам элементарных частиц — в частности, сложным закономерностям распределения электронов по оболочкам вокруг ядер атомов.

На основе этих данных нейросеть научилась исследовать произвольные молекулы квантовыми методами Монте-Карло. Они подразумевают решение уравнений Шредингера для большого количества частиц. Основная сложность при выполнении таких задач — необходимость больших вычислительных мощностей для определения многочастичной волновой функции. Обычно используют более простые методы, например Теорию функционала плотности (DFT) или связанные кластеры (CC).

Однако такие упрощения создают ряд ограничений и для многих соединений все равно оказываются практически бесполезными. В результате физикам и химикам приходится постоянно искать компромиссы: или низкая точность, но относительно быстрые расчеты, либо высокая точность, но при этом нужно искать, на каком «железе» все это можно обсчитать. А в большинстве случаев выбора особого нет: сложные молекулы не по зубам даже современным суперкомпьютерам и системам распределенных вычислений.

А нейросети PauliNet удалось создать свою методику вычисления волновых функций. Этот алгоритм за вполне разумные сроки способен решать уравнения Шредингера для практически любых молекул.

В приведенных примерах авторы этого искусственного интеллекта определяли свойства ряда соединений за считаные десятки часов работы обычных графических карт персональных компьютеров. Таким образом немецкие ученые нашли новый и чрезвычайно эффективный способ вычисления основного состояния произвольных молекул.

Нашли опечатку? Выделите фрагмент и нажмите Ctrl + Enter.
Подписывайтесь на нас в Telegram, Яндекс.Новостях и VK
Вчера, 10:39
Сергей Васильев

Моделирование указало, как менялся путь формирования и распада суперконтинентов на протяжении истории Земли. Это позволило ученым предсказать, как и где образуется следующий из них, снова объединив практически всю сушу планеты.

Позавчера, 16:47
Василий Парфенов

В конце сентября, по не установленным пока причинам, возникли утечки на газопроводах «Северный поток». Многие издания и пользователи интернета уже подробно проанализировали (и продолжают обсуждать), каковы политические и экономические последствия этого инцидента. В свою очередь, Naked Science постарается оценить, чем обернется происшествие с точки зрения безопасности судоходства и экологии, а также есть ли шанс на восстановление подводных трубопроводов.

Вчера, 19:16
Анна Новиковская

Палеонтологи предполагали, что загадочные дыры в нижней челюсти Сью, крупнейшего образца тираннозавра рекса, были вызваны заражением простейшими микропаразитами. Однако, изучив эти отверстия более внимательно, ученые не обнаружили следов инфекционного заболевания: дырки в черепе Сью оставило что-то другое.

Вчера, 10:39
Сергей Васильев

Моделирование указало, как менялся путь формирования и распада суперконтинентов на протяжении истории Земли. Это позволило ученым предсказать, как и где образуется следующий из них, снова объединив практически всю сушу планеты.

Позавчера, 16:47
Василий Парфенов

В конце сентября, по не установленным пока причинам, возникли утечки на газопроводах «Северный поток». Многие издания и пользователи интернета уже подробно проанализировали (и продолжают обсуждать), каковы политические и экономические последствия этого инцидента. В свою очередь, Naked Science постарается оценить, чем обернется происшествие с точки зрения безопасности судоходства и экологии, а также есть ли шанс на восстановление подводных трубопроводов.

28 сентября
Александр Березин

Половина всего расхода энергии человечеством приходится на тепло, почти 50% из этого количества уходит на отопление и нагрев воды в домах. На электричество — всего 19%. Из этого ясно, что вопрос отопления даже важнее электроэнергетики, а без отказа от ископаемых топлив здесь зеленый переход невозможен. Однако, как показывает новая научная работа, водород в этой роли — лишь несбыточная мечта.

16 сентября
Алиса Гаджиева

Геродот в своей «Истории» утверждал, что блоки для пирамиды Хеопса и соседних пирамид доставляли по воде. Но сегодня от Нила до пирамид слишком далеко. Исследование кернов, взятых в пойме реки, позволило понять, как именно решался сложнейший вопрос транспортировки такого строительного материала.

15 сентября
Никита Логинов

Светодиоды потребляют намного меньше энергии, чем традиционные газоразрядные лампы, что должно сократить парниковые выбросы. Но при этом светодиодное освещение угрожает здоровью жителей и разрушает местные экосистемы в городах и селах.

3 сентября
Алиса Гаджиева

В «Кратких сообщениях Института археологии» опубликована статья Михаила Казанского и Анны Мастыковой, в которой авторы обобщили все известное из самых разных источников (от позднеантичных авторов до материалов археологических раскопок) о народе акациры. В результате они не только узнали, где те жили во время Великого переселения народов, но и предположили, как это племя нашло общий язык с соседями.

[miniorange_social_login]

Комментарии

9 Комментариев

-
0
+
Это, конечно, крутая новость, но индекс важности – 8? Если разбрасываетесь такими цифрами, то может будете объяснять что именно оно изменит в нашей жизни?
    -
    0
    +
    Квантовый уровень постоянно работает именно в вашей жизни. Копирование ДНК идет внутре вас именно на квантовом уровне, и уравнения Шредингера работают там же.
    +
      ещё комментарии
      -
      0
      +
      Так, хорошо. У них в описании рейтинга важности – 9 это появление лекарства от рака. Я понимаю, что оно поменяет. Но вот эта новость о чем? Что именно поменяет главная технология в настоящий момент или недалёком будущем?
        05.01.2021
        -
        0
        +
        Ну, может, способность определять за разумное время свойства многих соединений поможет находить лекарства от рака?
          -
          0
          +
          Поможет, голубчик, еще как поможет. У Фейнмана в его лекциях написано примерно следующее - дайте мне скорости и координаты всех молекул во Вселенной, и я предскажу Вам будущее.
            06.01.2021
            -
            0
            +
            Я помню, пару лет назад на научно-популярной лекции про квантовую теорию, лектор замечал, что на данный момент мы можем точно решать квантовые волновые уравнения только для достаточно простых систем, вроде атома водорода. Для остальных у нас дури не хватает. И каждый шаг на этом путь я, собственно, приветствую
              -
              0
              +
              А без точного решения можно и обойтись. С помощью теории функционала плотности (ТФП, она же DFT) можно приближённо обсчитывать системы из нескольких сотен атомов. Но эта "приближённость" такая, что даже знай мы точное решение - мы не смогли бы в эксперименте отличить его от приближённого.
        -
        0
        +
        Если учесть, что даже теория функционала плотности, которая позволяет рассчитывать системы из пары-тройки сотен атомов с сумасшедшей точностью, совершила революцию в квантовой химии и физике и позволила человечеству узнать такое, о чём оно ещё в 60-е даже мечтать не могло, то технология, которая позволит с такой же точностью считать десятки и сотни тысяч атомов, поменяет всё ещё больше. Что поменяет? Например, позволит разработать, например, катализаторы химических процессов, новые материалы с заданными свойствами, можно будет рассчитать биохимические реакции, в том числе и для предсказания эффектов лекарств. И многое другое. Это и сейчас делается вовсю, но ограничения на число атомов изрядно тормозят процесс... Впрочем, не прочитав исходную статью, я не берусь, насколько описанный метод точен и насколько он универсален. Как он соотносится по скорости счёта и точности с другими методами, которые сейчас используются для расчёта больших систем: DFT-B, QM/MM и проч.

Подтвердить?
Подтвердить?
Не получилось опубликовать!

Вы попытались написать запрещенную фразу или вас забанили за частые нарушения.

Понятно
Жалоба отправлена

Мы обязательно проверим комментарий и
при необходимости примем меры.

Спасибо
Аккаунт заблокирован!

Из-за нарушений правил сайта на ваш аккаунт были наложены ограничения. Если это ошибка, напишите нам.

Понятно
Что-то пошло не так!

Наши фильтры обнаружили в ваших действиях признаки накрутки. Отдохните немного и вернитесь к нам позже.

Понятно
Лучшие материалы
Войти
Регистрируясь, вы соглашаетесь с правилами использования сайта и даете согласие на обработку персональных данных.
Ваша заявка получена

Мы скоро изучим заявку и свяжемся с Вами по указанной почте в случае положительного исхода. Спасибо за интерес к проекту.

Понятно
Ваше сообщение получено

Мы скоро прочитаем его и свяжемся с Вами по указанной почте. Спасибо за интерес к проекту.

Понятно

Сообщить об опечатке

Текст, который будет отправлен нашим редакторам: