• Добавить в закладки
  • Facebook
  • Twitter
  • Telegram
  • VK
  • Печать
  • Email
  • Скопировать ссылку
05.01.2021, 08:05
Василий Парфенов
9
7 099

Искусственный интеллект научился определять свойства любых молекул, решая уравнение Шредингера

❋ 8.0

Прорывной алгоритм может в разумные сроки и не привлекая суперкомпьютеры решать уравнение Шредингера для произвольных молекул. Это позволяет без трудоемких и затратных натурных экспериментов с большой вероятностью определять основные свойства вещества.

Искусственный интеллект научился определять свойства любых молекул решая уравнение Шредингера
Пример определения свойств молекулы циклобутадиена разными методами. PauliNet сравнивается с двумя вариантами связанных кластеров (MR-CC и CCSD), а также с экспериментальными данными / ©Hermann, J., Schätzle, Z. & Noé, F. Deep-neural-network solution of the electronic Schrödinger equation. Nat. Chem. 12, 891–897 (2020). https://doi.org/10.1038/s41557-020-0544-y / Автор: Наталья Федосеева

Разработку представили немецкие ученые из Свободного университета Берлина (Freie Universität Berlin). Особенности разработки и обучения глубинной нейронной сети PauliNet они описали в статье, которая была опубликована в рецензируемом журнале Nature Chemistry. Поскольку материал доступен только по подписке, его основные тезисы также можно изучить в препринте, размещенном на портале arXiv годом ранее. С тех пор научная работа была существенно дополнена, в том числе практическими результатами, но общее представление о технологии дает и предварительная публикация.

Алгоритм PauliNet получил свое название в честь принципа Паули — одного из фундаментальных правил квантовой механики. Согласно этому принципу, два и более электрона в атомах не могут находиться в одинаковых квантовых состояниях. То есть при обмене электронами их волновая функция меняет знак. Эта антисимметрия, а также ряд других постулатов квантовой физики были «зашиты» в глубинную нейросеть (Deep neural network) сразу. А вот обучали ее уже другим свойствам элементарных частиц — в частности, сложным закономерностям распределения электронов по оболочкам вокруг ядер атомов.

На основе этих данных нейросеть научилась исследовать произвольные молекулы квантовыми методами Монте-Карло. Они подразумевают решение уравнений Шредингера для большого количества частиц. Основная сложность при выполнении таких задач — необходимость больших вычислительных мощностей для определения многочастичной волновой функции. Обычно используют более простые методы, например Теорию функционала плотности (DFT) или связанные кластеры (CC).

Однако такие упрощения создают ряд ограничений и для многих соединений все равно оказываются практически бесполезными. В результате физикам и химикам приходится постоянно искать компромиссы: или низкая точность, но относительно быстрые расчеты, либо высокая точность, но при этом нужно искать, на каком «железе» все это можно обсчитать. А в большинстве случаев выбора особого нет: сложные молекулы не по зубам даже современным суперкомпьютерам и системам распределенных вычислений.

А нейросети PauliNet удалось создать свою методику вычисления волновых функций. Этот алгоритм за вполне разумные сроки способен решать уравнения Шредингера для практически любых молекул.

В приведенных примерах авторы этого искусственного интеллекта определяли свойства ряда соединений за считаные десятки часов работы обычных графических карт персональных компьютеров. Таким образом немецкие ученые нашли новый и чрезвычайно эффективный способ вычисления основного состояния произвольных молекул.

Нашли опечатку? Выделите фрагмент и нажмите Ctrl + Enter.
mostly harmless Есть телега: https://t.me/tempest_exults
Подписывайтесь на нас в Telegram, Яндекс.Новостях и VK
Предстоящие мероприятия
20 августа, 21:01
Юлия Трепалина

Биологи несколько месяцев наблюдали за семьей больших листоносов, самыми крупными плотоядными летучими мышами из рода ложных вампиров (Vampyrum). Оказалось, что эти рукокрылые на удивление тесно общаются с членами своей группы, проявляют к ним нечто похожее на нежность и заботу.

21 августа, 10:04
Дарья Губина

В феврале 2023 года телескоп KM3NeT засек «аварию» нейтрино. Мириады нейтрино постоянно пролетают через нас, но этой конкретной частице «посчастливилось» наткнуться на атом. Ученым повезло: это оказалось нейтрино рекордно высокой энергии. Откуда оно взялось?

21 августа, 16:50
Денис Яковлев

Основным фактором развития плоскоклеточного рака кожи считается ультрафиолетовое излучение, которое может провоцировать в клетках генетические мутации. Американские онкологи впервые описали клинический случай, когда развитию этой формы рака способствовал вирус папилломы человека.

16 августа, 19:09
Адель Романова

Астрономы подсчитали, что с поверхности летящего по Солнечной системе межзвездного объекта 3I/ATLAS каждую секунду испаряется около 40 килограммов водяного льда. Такую сильную кометную активность он проявил, будучи в три с половиной раза дальше Земли от Солнца. По мнению ученых, это довольно необычно.

18 августа, 11:11
Денис Яковлев

За последнее десятилетие ученые создали несколько сложных систем «мозг — компьютер», которые позволяли преобразовывать мозговую активность людей, лишившихся способности говорить из-за различных заболеваний, в речь. Однако до сих пор удавалось расшифровать лишь небольшое количество слов. Теперь в США создали алгоритм, благодаря которому удалось распознать до 54 процентов «речи».

19 августа, 15:54
Елена Авдеева

К любопытным выводам привели наблюдения японских ученых за пестролицыми буревестниками. Оказалось, эти птицы испражняются в основном на лету, намеренно избегая такой возможности на поверхности воды. Очевидно, предположили исследователи, это облегчает движения в воздухе взрослым особям с добычей во рту.

25 июля, 07:47
Адель Романова

Прибывшая из межзвездного пространства предполагаемая комета 3I/ATLAS движется по траектории, максимально удобной для гравитационных маневров управляемого корабля, при этом возможность ее отслеживания с Земли практически минимальна. По мнению некоторых ученых, такое «поведение» объекта наводит на определенные мысли.

6 августа, 20:59
Татьяна Пичугина

Примерно 12 800 лет назад в Северном полушарии началось резкое изменение климата, которое сопровождалось вымиранием мегафауны и угасанием культуры Кловис. Такое могло произойти, например, из-за прорыва пресных вод в Атлантику или мощного вулканического извержения. Несколько лет назад ученые обнаружили места на суше с повышенным содержанием элементов платиновой группы, прослоями угля, микрочастицами расплава. По их мнению, это может быть признаком пребывания Земли в потоке обломков кометы или астероида. В новой работе впервые представлены доказательства кометного события в позднем дриасе из морских осадочных толщ.

22 июля, 14:44
ФизТех

Команда исследователей из Сколтеха, МФТИ, Института искусственного интеллекта AIRI и других научных центров разработала метод, позволяющий не просто отличать тексты, написанные человеком, от сгенерированных нейросетью, но и понимать, по каким именно признакам классификатор принимает решение о том, является ли текст генерацией или нет.  Анализируя внутренние состояния глубоких слоев языковой модели, ученые смогли выделить и интерпретировать численные признаки, отвечающие за стилистику, сложность и «степень уверенности» текста.

[miniorange_social_login]

Комментарии

9 Комментариев
Это, конечно, крутая новость, но индекс важности – 8? Если разбрасываетесь такими цифрами, то может будете объяснять что именно оно изменит в нашей жизни?
    Квантовый уровень постоянно работает именно в вашей жизни. Копирование ДНК идет внутре вас именно на квантовом уровне, и уравнения Шредингера работают там же.
    +
      ещё комментарии
      Так, хорошо. У них в описании рейтинга важности – 9 это появление лекарства от рака. Я понимаю, что оно поменяет. Но вот эта новость о чем? Что именно поменяет главная технология в настоящий момент или недалёком будущем?
        Max Savushkin
        05.01.2021
        -
        0
        +
        Ну, может, способность определять за разумное время свойства многих соединений поможет находить лекарства от рака?
          Поможет, голубчик, еще как поможет. У Фейнмана в его лекциях написано примерно следующее - дайте мне скорости и координаты всех молекул во Вселенной, и я предскажу Вам будущее.
            Max Savushkin
            06.01.2021
            -
            0
            +
            Я помню, пару лет назад на научно-популярной лекции про квантовую теорию, лектор замечал, что на данный момент мы можем точно решать квантовые волновые уравнения только для достаточно простых систем, вроде атома водорода. Для остальных у нас дури не хватает. И каждый шаг на этом путь я, собственно, приветствую
              -
              0
              +
              А без точного решения можно и обойтись. С помощью теории функционала плотности (ТФП, она же DFT) можно приближённо обсчитывать системы из нескольких сотен атомов. Но эта "приближённость" такая, что даже знай мы точное решение - мы не смогли бы в эксперименте отличить его от приближённого.
        -
        0
        +
        Если учесть, что даже теория функционала плотности, которая позволяет рассчитывать системы из пары-тройки сотен атомов с сумасшедшей точностью, совершила революцию в квантовой химии и физике и позволила человечеству узнать такое, о чём оно ещё в 60-е даже мечтать не могло, то технология, которая позволит с такой же точностью считать десятки и сотни тысяч атомов, поменяет всё ещё больше. Что поменяет? Например, позволит разработать, например, катализаторы химических процессов, новые материалы с заданными свойствами, можно будет рассчитать биохимические реакции, в том числе и для предсказания эффектов лекарств. И многое другое. Это и сейчас делается вовсю, но ограничения на число атомов изрядно тормозят процесс... Впрочем, не прочитав исходную статью, я не берусь, насколько описанный метод точен и насколько он универсален. Как он соотносится по скорости счёта и точности с другими методами, которые сейчас используются для расчёта больших систем: DFT-B, QM/MM и проч.
Подтвердить?
Подтвердить?
Причина отклонения
Подтвердить?
Не получилось опубликовать!

Вы попытались написать запрещенную фразу или вас забанили за частые нарушения.

Понятно
Жалоба отправлена

Мы обязательно проверим комментарий и
при необходимости примем меры.

Спасибо
Аккаунт заблокирован!

Из-за нарушений правил сайта на ваш аккаунт были наложены ограничения. Если это ошибка, напишите нам.

Понятно
Что-то пошло не так!

Наши фильтры обнаружили в ваших действиях признаки накрутки. Отдохните немного и вернитесь к нам позже.

Понятно
Лучшие материалы
Закрыть
Войти
Регистрируясь, вы соглашаетесь с правилами использования сайта и даете согласие на обработку персональных данных.
Ваша заявка получена

Мы скоро изучим заявку и свяжемся с Вами по указанной почте в случае положительного исхода. Спасибо за интерес к проекту.

Понятно