Уведомления
Авторизуйтесь или зарегистрируйтесь, чтобы оценивать материалы, создавать записи и писать комментарии.
Авторизуясь, вы соглашаетесь с правилами пользования сайтом и даете согласие на обработку персональных данных.
Ученые научились предсказывать динамику роста растений c помощью компьютерного зрения и машинного обучения
Группа ученых из Космического центра и Центра по научным и инженерным вычислительным технологиям для задач с большими массивами данных Сколтеха разработала метод предсказания прироста биомассы растений на основе 2D и 3D изображений.
Полученные результаты позволят повысить эффективность точного земледелия, как на Земле, так и в космосе. Результаты исследования были представлены на престижной международной научно-технической конференции IEEE Instrumentation and Measurement Technology Conference.
Население нашей планеты непрерывно растет, поэтому исследования, направленные на развитие точного земледелия чрезвычайно актуальны. Используемые в данной области высокие технологии открывают большие возможности для борьбы с голодом в развивающихся странах, обеспечения продовольственной безопасности, уменьшения воздействия человека на окружающую среду и повышения экономической эффективности сельского хозяйства. Тем не менее, точное земледелие сталкивается с рядом сложностей и нерешенных задач, ключевой проблемой является оптимизация использования ресурсов.
Для этих целей есть необходимость создавать точные предиктивные модели, позволяющие прогнозировать рост и оптимизировать производство продуктов. К сожалению, эмпирические модели, описывающие прирост биомассы в зависимости от различных факторов, имеют ряд недостатков: ограниченность применения к различным видам культур и слишком большое количество параметров, измерение которых является дорогостоящим или медленно. Универсальные модели, обладающие достаточной точностью незаменимы не только в «полях», но и при создании высокоэффективных тепличных хозяйств с контролируемыми условиями роста, а также в искусственных системах жизнеобеспечения, на космических станциях.
Команда ученых, в состав которой вошли три профессора Сколтеха: Руперт Герцер, Татьяна Подладчикова, Андрей Сомов и аспирант Сколтеха Дмитрий Шадрин, разработала метод прогнозирования роста растений в искусственных условиях. Первым этапом работы стал сбор статистических данных. Рост растений в искусственной беспочвенной системе фиксировался с помощью 3D камеры. Полученные данные позволили найти связь в увеличении суммарной площади поверхности всех листьев с приростом общей биомассы растений. После этого увеличение площади листьев фиксировалось с помощью 2D камеры, а на основе этих измерений строилась динамическая модель роста растения. Главная особенность разработанного метода – комбинирование 3D и 2D камер при сборе данных.
При таком подходе отпадает необходимость сложных вычислений со множеством параметров. Показатели площади всех листьев и биомассы в совокупности с разработанными математическими моделями дают точные результаты. Для проведения эксперимента была создана автоматическая система с искусственными условиями роста, укомплектованная 2D и 3D камерами, а также датчиками, собирающими данные об окружающей среде. Эта система использует машинное обучение для моделирования роста растений и прогнозирования его динамики.
В ходе эксперимента было обработано более 10000 изображений. Проведенное исследование легло в основу пилотного проекта по оптимизации роста растений в высокотехнологичном экспериментальном тепличном хозяйстве Мичуринского государственного аграрного университета.
«Главное преимущество нашего метода заключается в том, что 3D изображения достаточно получить для каждого вида растений всего один раз. После этого для прогнозирования прироста биомассы в теплицах достаточно использовать самые простые камеры. Это значительно упрощает и снижает стоимость систем прогнозирования, контроля и оптимизации для теплиц и искусственных систем жизнеобеспечения», – рассказывает первый автор исследования Дмитрий Шадрин.
«Стремление быть в гармонии с окружающим миром вызывает интерес человека к пониманию сути наблюдаемых явлений, их закономерностей и предвидению дальнейшего развития событий. В основе знаний об окружающем мире лежат наблюдение и эксперимент. Дмитрий Шадрин, аспирант Сколтеха, реализовал уникальный эксперимент по беспочвенному выращиванию томатов и салата. Новейшие данные, собранные в ходе эксперимента, а также разработка эффективных методов их анализа для прогнозирования роста биомассы – это большой вклад в создание автономных систем жизнеобеспечения в космосе и на Земле», – рассказывает профессор Космического центра Сколтеха Татьяна Подладчикова.
Человек и животные осваивают навыки, обучаясь на собственном опыте. Однако ученым из США удалось без явного обучения и физических манипуляций внести в мозг шаблон активности. Это позволило людям усвоить информацию и заставило по-другому воспринимать визуальные образы.
Своеобразную «шпаргалку» внутри клеток, объясняющую как перевести набор нуклеотидов («букв») в ДНК или РНК в последовательность аминокислот («деталей»), из которых состоят белки, называют генетическим кодом. Его устройство одинаково почти у всех организмов на Земле, однако ученые до сих пор спорят о времени его происхождения и постепенных изменениях. Теперь, проанализировав фрагменты белковой цепи этой древней генетической «шпаргалки», исследователи пересмотрели устоявшиеся представления о ее происхождении.
Та самая черная дыра, силуэт которой впервые увидел мир, расположена в центре крупной галактики М87 и привлекала к себе пристальное внимание задолго до получения знаменитого изображения: она постоянно бьет в нашу сторону гигантским потоком плазмы, а иногда с ней происходят труднопредсказуемые и не совсем понятные события. Одно из них впервые за много лет удалось зафиксировать во время очередных наблюдений.
С какого возраста зооврачи считают собак престарелыми? Это недавно выяснили исследователи из Великобритании и Венгрии, проанализировав карты пациентов ветеринарных клиник. Также ученые установили, от каких проблем со здоровьем чаще страдают пожилые питомцы.
Человек и животные осваивают навыки, обучаясь на собственном опыте. Однако ученым из США удалось без явного обучения и физических манипуляций внести в мозг шаблон активности. Это позволило людям усвоить информацию и заставило по-другому воспринимать визуальные образы.
Солнечной системе уже 4,6 миллиарда лет, и нынешнее расположение планет выдает ее явно динамичное прошлое: что-то заставляло миры смещаться. Недавнее открытие первых известных науке межзвездных объектов навело астрономов на мысль, что такой объект мог навестить наше космическое семейство в далеком прошлом и именно это создало ту картину, которую наблюдаем сейчас.
Обсерватории постоянно улавливают «мигающие» радиосигналы из глубин Вселенной. Чаще всего их источниками оказываются нейтронные звезды, которые за это и назвали пульсарами. Но к недавно обнаруженному источнику GLEAM-X J0704-37 они, по мнению астрономов, отношения не имеют.
Многие одинокие люди считают, что окружающие не разделяют их взглядов. Психологи из США решили проверить, так ли это на самом деле, и обнаружили общую особенность у людей с недостаточным количеством социальных связей.
Американская лунная программа «Артемида» предусматривает экспедиции длительностью от нескольких дней до долгих недель и даже месяцев, но луномобиля для передвижения экипажа по поверхности спутника Земли на сегодня нет. Поэтому космическое агентство США продумывает план действий на случай, если астронавты окажутся далеко от базы и кто-то из них внезапно не сможет идти самостоятельно.
Вы попытались написать запрещенную фразу или вас забанили за частые нарушения.
ПонятноИз-за нарушений правил сайта на ваш аккаунт были наложены ограничения. Если это ошибка, напишите нам.
ПонятноНаши фильтры обнаружили в ваших действиях признаки накрутки. Отдохните немного и вернитесь к нам позже.
ПонятноМы скоро изучим заявку и свяжемся с Вами по указанной почте в случае положительного исхода. Спасибо за интерес к проекту.
ПонятноМы скоро прочитаем его и свяжемся с Вами по указанной почте. Спасибо за интерес к проекту.
Понятно
Комментарии