Уведомления
Авторизуйтесь или зарегистрируйтесь, чтобы оценивать материалы, создавать записи и писать комментарии.
Авторизуясь, вы соглашаетесь с правилами пользования сайтом и даете согласие на обработку персональных данных.
Нейросеть на оптической основе оказалась в 100 раз энергоэффективнее обычной
Используя пространственный модулятор света и небольшой набор программируемых параметров, ученые проводили нелинейно-оптические вычисления внутри многомодовых волокон. Итоговая производительность работы их сети была сопоставима с нейросетями с более чем в 100 раз большим количеством параметров.
Современные генеративные модели искусственного интеллекта используют сотни миллиардов параметров для решения все более сложных задач. Обучение нейросетей таких масштабов требует огромных вычислительных мощностей, которые могут быть предоставлены только центрами обработки данных величиной с ангар, потребляющими энергию, эквивалентную потребностям в электричестве среднего по размеру города. Например, на обучение языковой модели GPT-3, которая имеет 175 миллиардов параметров, было потрачено 1,3 гигаватт-часа электроэнергии, что достаточно для полной зарядки 13 тысяч автомобилей Tesla Model S.
Для устойчивого развития искусственного интеллекта в его нынешнем темпе возникает необходимость переосмыслить как сами алгоритмы машинного обучения, так и требующееся для них вычислительное оборудование. Одним из решений может стать оптическая аппаратная реализация архитектуры нейронных сетей, то есть переход от опоры на чисто транзисторные вычислительные мощности к системам на оптоволоконной основе. В новом исследовании, опубликованном в журнале Advanced Photonics, группа ученых разработала такую нейросеть.
Предложенная архитектура сочетает в себе оптическую составляющую с небольшим количеством программируемых в цифровом виде параметров. С помощью метода, известного как формирование волнового фронта, исследователи управляли ультракороткими импульсами в многомодовых волокнах — это волокна с большим диаметром сердцевины, проводящие лучи света благодаря эффекту полного внутреннего отражения. Такие оптические волокна поддерживают несколько поперечных мод для заданной оптической частоты и поляризации. С их помощью ученые осуществляли нелинейно-оптические вычисления со средней оптической мощностью, измеряемой всего в микроваттах.

В результате производительность для задачи классификации изображений была сопоставима с цифровыми системами на транзисторной основе, имеющими в 100 с лишним раз большее количество параметров при одинаковом уровне точности. Ученые уменьшили количество параметров модели на 97 процентов, что привело к общему сокращению цифровых операций на 99 процентов по сравнению с аналогичной цифровой многослойной нейронной сетью, основанной на чисто транзисторной аппаратной части. Например, система приблизительно с двумя тысячами параметров работала так же хорошо, как типичная цифровая нейронная сеть более чем с 400 тысячами параметров.
Отдельно авторы рассмотрели вопрос скорости вычислений их нейросети, которая определяет итоговую скорость получения выводов от модели. Для их варианта сети она невысока и ограничена частотой обновления жидкокристаллического пространственного модулятора света. Это ограничение можно преодолеть, перейдя на более быстрый метод формирования волнового фронта: например, если использовать коммерческие цифровые микрозеркальные устройства и квадрантные фотодиоды — это фотодиоды, которые состоят из четырех оптически активных зон (излучающие диоды), разделенные между собой небольшим промежутком (их обычно используют для определения положения лазерных лучей друг относительно друга).
Реализуя ту же архитектуру оптических вычислений с набором коммерчески доступного высокоскоростного оборудования, можно было бы достичь производительности 25 терафлопс при общем энергопотреблении 12,6 ватта, что значительно ниже, чем потребление в 300 ватт классическим транзисторным графическим процессором с сопоставимой производительностью.
Обращает на себя внимание огромный разрыв в возможностях нейросетей на оптической элементной базе и на классической транзисторной. Если его удастся перенести в серийные коммерческие решения, то именно первые, по всей видимости, станут будущим в развитии больших языковых моделей, подобных GPT-4.
От рыб произошли все наземные позвоночные, включая нас, но как именно рыбы стали главным населением морей — до последнего времени оставалось неясным. Авторы новой научной работы попытались доказать, что причиной этого было вымирание, возможно, вызванное белыми ночами.
На юге Африки ученые обнаружили коллекцию небольших каменных стрел. С виду — обычные артефакты древнего человека. Но современные технологии позволили выявить их смертельный секрет. Эти наконечники, которым почти 60 тысяч лет, сохранили следы яда. Авторы нового исследования пришли к выводу, что древние охотники стали использовать яды намного раньше, чем считала наука.
В Олдувайском ущелье на севере Танзании ученые обнаружили скелет слона возрастом 1,78 миллиона лет, а рядом с ним — необычные для того времени каменные орудия. Авторы нового исследования полагают, что им удалось найти древнейшее место разделки гигантской добычи.
На юге Африки ученые обнаружили коллекцию небольших каменных стрел. С виду — обычные артефакты древнего человека. Но современные технологии позволили выявить их смертельный секрет. Эти наконечники, которым почти 60 тысяч лет, сохранили следы яда. Авторы нового исследования пришли к выводу, что древние охотники стали использовать яды намного раньше, чем считала наука.
От рыб произошли все наземные позвоночные, включая нас, но как именно рыбы стали главным населением морей — до последнего времени оставалось неясным. Авторы новой научной работы попытались доказать, что причиной этого было вымирание, возможно, вызванное белыми ночами.
Ученые десятилетиями ищут кости мамонтов, которые, по данным генетиков, могли дожить на материке до бронзового века. Очередная потенциальная находка с Аляски, считавшаяся остатками мамонтов, после проверки оказалась костями китов, умерших около двух тысяч лет назад.
На скалистых берегах аргентинской Патагонии разворачивается настоящая драма. Магеллановы пингвины, долгое время чувствовавшие себя в безопасности на суше в своих многотысячных колониях, столкнулись с новым и беспощадным врагом. Их извечные морские страхи — касатки и морские леопарды — теперь блекнут перед угрозой, пришедшей из глубины материка. Виновник переполоха — грациозный и мощный хищник, недавно вернувшийся на эти земли после долгого изгнания.
Среди самых интригующих открытий космического телескопа «Джеймс Уэбб» — компактные объекты, получившие название «маленькие красные точки». Их видели только в самых дальних уголках Вселенной. Большинство возникло в первый миллиард лет после Большого взрыва, и ученые предполагали, что такие источники представляют собой небольшие компактные галактики. Однако международная команда астрономов пришла к иному выводу. Они предположили, что на самом деле «маленькие красные точки» — черные дыры, окруженные массивной газовой оболочкой.
Ученые задались вопросом: почему два расположенных по соседству спутника Юпитера такие разные, ведь на Ио повсеместно извергаются вулканы, а Европа полностью покрыта многокилометровой коркой льда. Есть версия, что Ио когда-то тоже была богата водой, но по итогам недавнего исследования это сочли неправдоподобным.
Вы попытались написать запрещенную фразу или вас забанили за частые нарушения.
Понятно
Из-за нарушений правил сайта на ваш аккаунт были наложены ограничения. Если это ошибка, напишите нам.
Понятно
Наши фильтры обнаружили в ваших действиях признаки накрутки. Отдохните немного и вернитесь к нам позже.
Понятно
Мы скоро изучим заявку и свяжемся с Вами по указанной почте в случае положительного исхода. Спасибо за интерес к проекту.
Понятно

Последние комментарии