Уведомления
Авторизуйтесь или зарегистрируйтесь, чтобы оценивать материалы, создавать записи и писать комментарии.
Авторизуясь, вы соглашаетесь с правилами пользования сайтом и даете согласие на обработку персональных данных.
Ученые придумали новые подходы для создания реалистичных картинок с помощью нейронных сетей
Команда российских ученых, работающих в МФТИ, Иннополисе и Сколково, совершила научный прорыв в области генеративного моделирования — создании новых изображений, похожих на настоящие фотографии или рисунки. Они разработали новый метод, который значительно ускоряет и упрощает процесс генерации в теории и на практике.
Их результаты опубликованы в материалах конференции NeurIPS 2024. Генеративное моделирование — это область искусственного интеллекта, занимающаяся созданием новых данных, подобных уже существующим. Это могут быть изображения, тексты, музыкальные произведения и многое другое. Генеративные модели находят применение в самых разных областях: от создания реалистичных изображений для игр и фильмов до разработки новых лекарств и материалов. Одна из ключевых технологий в этой области — сопоставление потоков (Flow Matching).
Сопоставление потоков нужно для того, чтобы плавно преобразовать одно распределение данных в другое. Например, превратить набор черно-белых изображений в набор цветных фото, на которых нарисовано то же самое. Сопоставление потоков похоже на создание «реки» или «потока», который течет из одного распределения в другое. Каждый элемент данных при таком подходе представляется собой как бы частичку, которая плывет по этому потоку, плавно изменяя свои свойства. Задача заключается в том, чтобы найти поток, который наилучшим образом преобразует исходные данные в целевые.
В ранних моделях, основанных на сопоставлении потоков, «река» часто имела извилистые русла, а «путешествие» частиц было долгим и сложным. Это приводило к замедлению процесса генерации новых данных. Поэтому ученые искали способы сделать траектории потока максимально прямыми.
Существующие подходы к выпрямлению траекторий имели свои недостатки. Некоторые методы были итеративными, то есть многократно повторяли процесс улучшения «прямоты», накапливая при этом ошибки. Другие методы основывались на упрощенных приближениях, которые не гарантировали нужного результата.
Новый метод оптимального сопоставления потоков, представленный на конференции NeurIPS 2024, решает эти проблемы. Авторы исследования разработали и теоретически обосновали новый подход, который позволяет вычислять поток с прямыми траекториями всего за одну минимизацию функции потерь, используя для этого векторные поля, параметризованные выпуклыми функциями. Вместо того, чтобы позволять точкам блуждать по всем возможным путям, новый подход оптимального сопоставления потоков использует особые «векторные поля», которые задают прямые траектории движения.

Это подобно тому, как строители прокладывают прямую дорогу между двумя пунктами, не допуская изгибов. Эти векторные поля математически связаны с градиентами выпуклых функций , которые задают «инструкции» для движения точек по прямым путям. Это позволяет получить поток с прямыми траекториями и, следовательно, генерировать новые данные намного быстрее и эффективнее, чем с помощью предыдущих методов. Разработанный авторами алгоритм не требует многократных итераций и сложных приближений, что значительно упрощает процесс и повышает точность.
В своем исследовании ученые продемонстрировали валидность доказанной теории и эффективность предложенного ими метода на различных задачах, начиная от простых двумерных примеров и заканчивая довольно сложными задачами перевода изображений.
Новый подход показал лучшие результаты, чем существующие методы, значительно уменьшив погрешность и ускорив генерацию реалистичных изображений.
«Наш подход может быть эффективно использован для решения различных задач, связанных с созданием новых наборов данных и их преобразованием. Например, для создания реалистичных изображений человеческих лиц, превращения эскизов в фотореалистичные картинки, генерации новых текстур и для восстановления ранее поврежденных изображений» — рассказал Александр Гасников, заведующий лабораторией математических методов оптимизации МФТИ.
Разработка нового алгоритма открывает новые возможности для исследований в области генеративного моделирования. Ученые планируют изучить применение его к еще более сложным задачам, а также улучшить сам алгоритм для повышения его скорости и универсальности. Их исследование обещает ускорить развитие технологий, связанных с созданием и преобразованием данных, открывая новые возможности для различных областей науки и техники.
Ученые из Института космических исследований РАН и МФТИ раскрыли химический механизм, объясняющий появление молекул воды на поверхностях астероидов.
Пластичность мозга — его способность перестраиваться под влиянием приходящей информации. Это свойство необходимо для обучения и адаптации. Пластичность особенно высока в детском и юношеском возрасте, она помогает быстро выучить иностранный язык и освоить сложные моторные навыки (например, фигурное катание). Ресурс пластичности есть и у пожилых людей — благодаря альтернативным нейронным сетям они восстанавливаются после травмы или инсульта. Как выясняется, высокая пластичность это не всегда хорошо. Нарушение тонкого баланса между пластичностью и стабильностью может вести к неприятным последствиям, таким как хроническая боль, тиннитус (звон в ушах) и фобии.
Исследователи Санкт-Петербургского государственного университета разработали эффективный способ обнаружения в крови важнейшего биомаркера иммунитета — неоптерина — с помощью нанотехнологий и лазера.
Астрономы недавно проанализировали базу данных о падающих на Землю объектах и пришли к выводу, что два из них прибыли из межзвездного пространства. Известна не только дата, но и место падения каждого из них.
На наземные растения, в основном деревья, приходится 80 процентов всей биомассы Земли, 450 миллиардов тонн сухого углерода и более двух триллионов тонн «живого веса». Поэтому идея сажать новые леса для связывания СО2 из атмосферы долго казалась логичной. Новые данные показали, что реальность заметно сложнее.
«Любить лишь можно только раз», — писал поэт Сергей Есенин, а герои культовых сериалов приходили к выводу, что «настоящая» влюбленность случается в жизни максимум дважды. Однако ни один из этих тезисов не подкреплен научными данными. Американские исследователи подошли к вопросу иначе: опросили более 10 тысяч человек и вывели среднее число сильных влюбленностей, возможных в течение жизни.
Астрономы недавно проанализировали базу данных о падающих на Землю объектах и пришли к выводу, что два из них прибыли из межзвездного пространства. Известна не только дата, но и место падения каждого из них.
Международная команда палеонтологов описала новый вид динозавра размером с крупную современную птицу. Он носил на голове плотный костяной нарост, который эти животные, возможно, использовали для внутривидовых разборок. Находка показывает, что даже мелкие хищники мелового периода могли решать конфликты не только когтями и зубами, но и ударами головой.
Образцы грунта, взятые астронавтами полвека назад, вложили еще один важный кирпич в здание научной картины мира: гипотеза о том, что Земля исходно была сухой, не стыкуется с фактами. Похоже, идею о невозможности сохранения большого количества воды на «теплых» планетах придется пересмотреть.
Вы попытались написать запрещенную фразу или вас забанили за частые нарушения.
Понятно
Из-за нарушений правил сайта на ваш аккаунт были наложены ограничения. Если это ошибка, напишите нам.
Понятно
Наши фильтры обнаружили в ваших действиях признаки накрутки. Отдохните немного и вернитесь к нам позже.
Понятно
Мы скоро изучим заявку и свяжемся с Вами по указанной почте в случае положительного исхода. Спасибо за интерес к проекту.
Понятно
