Уведомления
Авторизуйтесь или зарегистрируйтесь, чтобы оценивать материалы, создавать записи и писать комментарии.
Авторизуясь, вы соглашаетесь с правилами пользования сайтом и даете согласие на обработку персональных данных.
В ЮФУ разработали алгоритм быстрого обнаружения малых целей с беспилотников
Чжан Цзинвэй, аспирант ЮФУ, победитель федерального конкурса управленцев «Лидеры России», разработал упрощенную модель нейронных сетей для беспилотных летательных аппаратов, выполняющих задачу быстрого обнаружения небольших объектов в реальном времени. В сравнении с аналогами беспилотники на новом алгоритме показывают большую эффективность, точность, скорость и низкую энергозатратность.
Беспилотные летательные аппараты (БПЛА) имеют огромное значение для промышленности и широко востребованы в разных отраслях, начиная с сельского хозяйства и заканчивая специальным и военным назначением. В современных реалиях развитие беспилотной авиации становится еще более актуальным и является одной из приоритетных задач России. Так, 28 июня Президент России Владимир Путин утвердил стратегию по ее развитию до 2030–2035 годы. Соответствующее распоряжение подписано премьер-министром России Михаилом Мишустиным и размещено на сайте кабмина.
Помимо самой конструкции малогабаритных БПЛА важным аспектом является идентификация целей. Самые современные беспилотники сегодня работают на YOLOv5 (You Only Look Once version 5) – это последняя версия популярной архитектуры нейронных сетей для задачи быстрого обнаружения объектов в реальном времени. За счет своей скорости она получила широкое признание и используется для различных задач, таких как обнаружение объектов на видеофайлах, анализ поведения людей, автономная навигация автомобилей и прочее. Однако она имеет недостатки: длинная и сложная модель самого алгоритма и, как следствие, трудности поиска небольших по размеру целей.
В своем недавнем исследовании аспирант Института математики, механики и компьютерных наук имени И. И. Воровича ЮФУ, победитель федерального конкурса управленцев «Лидеры России» и доверенный представитель ЮФУ по взаимодействию с организациями Китая Чжан Цзинвэй усовершенствовал данную архитектуру. Кроме того, молодой ученый предложил облегченный и более эффективный алгоритм под названием «L-YOLO».
Он включает в себя новую головку обнаружения для повышения точности поиска небольших целей, а также измененный размер ячеек привязки, соответствующий масштабам потенциальных целей, с использованием алгоритма кластеризации [прим. объединение схожих объектов в группы, также называемые кластерами].
«Алгоритм L-YOLO обладает не только высокой эффективностью обнаружения небольших целей, но и более легкой моделью, подтверждая, что обнаружение целей с точки зрения беспилотных летательных аппаратов имеет хорошие перспективы применения. В сравнение с YOLOv5 наш алгоритм продемонстрировал сокращение вычислительных затрат на 42,42 процентов и количества параметров на 48,6 процентов», – рассказал Чжан Цзинвэй.
По словам ученого, непрерывное развитие науки и технологий, включая искусственный интеллект, привело к широкому внедрению беспилотных летательных аппаратов, которые существенно облегчают повседневную жизнь и работу человека. За счет компактных размеров и деликатной эксплуатации дроны способны заменить людей в выполнении рискованных или сложных задач, таких как тушение лесных пожаров, инспекция высоковольтных линий электропередачи и мониторинг окружающей среды.
«В настоящее время обнаружение малых целей с точки зрения беспилотных летательных аппаратов является актуальной темой, поэтому уже многие исследователи предложили соответствующие алгоритмы. Мы же доказали с помощью экспериментальных данных, что алгоритм L-YOLO обеспечивает баланс между точностью обнаружения и вычислениями, и его производительность лучше, чем у других алгоритмов обнаружения малых целей из той же серии», – отметил аспирант.
Беспилотники, со встроенным алгоритмом L-YOLO, можно будет применять в самых различных областях, включая военную, гражданскую, сельскохозяйственную сферы, а также спасательные и поисково-спасательные операции. В этих сценариях идентификация и отслеживание небольших целей, таких как отдельные люди, животные, транспортные средства, имеет важное значение для успешного выполнения задачи.

В данный момент по этому направлению Чжан Цзинвэй активно сотрудничает с Пекинским научно-техническим университетом и Хэнаньским профессиональным университетом легкой промышленности (партнеры Южного федерального университета) и совместно с рядом китайских научно-технических корпораций занимается имплементацией данных наработок в производственном секторе. Так, китайская сторона заинтересована в развитии научно-технического сотрудничества с Россией в данной области.
Результаты исследования, в котором принимали участие профессор Пекинского научного университета КНР Ли Вэньфа, доцент Пекинского объединенного университета КНР Шан Синьна, аспирант Южного федерального университета Чжан Цзинвэй и магистрант Пекинского объединенного университета КНР Ян Жуцзинь под руководством профессора Ли Вэньфа и профессора Шан Синьна, изложены в журнале Electronics. Проект финансируется Национальным фондом естественных наук КНР.
Бразильские зоологи выяснили, каких именно насекомых и пауков ловят домашние кошки в городах. Для этого использовали не полевые наблюдения, а анализ социальных сетей. Просмотрев более 17 000 видео и фото в TikTok и на фотостоке iStock, ученые нашли 550 записей кошачьей охоты. Самая частая добыча — кузнечики, сверчки, цикады и тараканы.
Чтобы охотиться при температурах ниже нуля, пауки рода Clubiona выработали особые белки-антифризы. Изучив членистоногих, собранных в грушевых садах неподалеку от города Брно (Чехия), ученые раскрыли молекулярный механизм, позволяющий этим паукам не впадать в зимнюю спячку.
На отвесных скалах итальянского побережья, куда десятилетиями поднимались только скалолазы, скрывалась уникальная находка. Речь идет о загадочных отпечатках, которые рассказали драматическую историю, развернувшуюся много миллионов лет назад. Ученые считают, что стали свидетелями момента внезапной паники животных, причиной которой было землетрясение.
Человеческие языки разнообразны, но это разнообразие ограничивается повторяющимися закономерностями. Пытаясь описать правила, которым подчиняются различия в грамматике, лингвисты сформулировали ряд так называемых грамматических универсалий — утверждений, предположительно верных для всех или большинства языков мира. Международная команда ученых провела статистический анализ на материале 2430 языков и обнаружила, что соответствующими действительности можно считать около трети таких утверждений.
Так называемые зумеры и альфа, несмотря на молодой возраст, уже формируют ключевые поведенческие и потребительские тренды. Ученые Пермского Политеха рассказали, почему обозначение поколений начали с конца алфавита, как альфа и зумеры отличаются в способности к терпеливости, совмещении цифрового и реального «Я», подходу к профессиональной деятельности и отношении к финансам, какое мышление пришло на смену клиповому и как использование искусственного интеллекта повлияет на авторитет родителей.
Бразильские зоологи выяснили, каких именно насекомых и пауков ловят домашние кошки в городах. Для этого использовали не полевые наблюдения, а анализ социальных сетей. Просмотрев более 17 000 видео и фото в TikTok и на фотостоке iStock, ученые нашли 550 записей кошачьей охоты. Самая частая добыча — кузнечики, сверчки, цикады и тараканы.
Проанализировав данные наблюдений, полученных с помощью наземных обсерваторий за последние два десятилетия, астрономы обнаружили потенциально обитаемый мир — суперземлю Gliese 251 c (GJ 251 с). Планета обращается вокруг красного карлика на расстоянии около 18 световых лет от Земли и считается одним из самых перспективных кандидатов для поисков жизни.
Человеческие языки разнообразны, но это разнообразие ограничивается повторяющимися закономерностями. Пытаясь описать правила, которым подчиняются различия в грамматике, лингвисты сформулировали ряд так называемых грамматических универсалий — утверждений, предположительно верных для всех или большинства языков мира. Международная команда ученых провела статистический анализ на материале 2430 языков и обнаружила, что соответствующими действительности можно считать около трети таких утверждений.
По расчетам, большинство «гостей» из других звездных систем летят к Земле примерно со стороны созвездия Геркулес. Скорее всего, они время от времени падают на нашу планету, просто мы еще не научились это замечать. Как удалось вычислить, чаще всего они должны падать зимой и где-то в окрестностях экватора.
Вы попытались написать запрещенную фразу или вас забанили за частые нарушения.
Понятно
Из-за нарушений правил сайта на ваш аккаунт были наложены ограничения. Если это ошибка, напишите нам.
Понятно
Наши фильтры обнаружили в ваших действиях признаки накрутки. Отдохните немного и вернитесь к нам позже.
Понятно
Мы скоро изучим заявку и свяжемся с Вами по указанной почте в случае положительного исхода. Спасибо за интерес к проекту.
Понятно
