Уведомления
Авторизуйтесь или зарегистрируйтесь, чтобы оценивать материалы, создавать записи и писать комментарии.
Авторизуясь, вы соглашаетесь с правилами пользования сайтом и даете согласие на обработку персональных данных.
Ученые обнаружили предел полезности данных для обучения нейросетей
Исследователи из МФТИ впервые систематически изучили, как изменяется и стабилизируется процесс обучения нейронных сетей по мере добавления новых данных. Их работа, сочетающая теоретический анализ и обширные эксперименты, показывает, что так называемый «ландшафт функции потерь» нейросети сходится к определенной форме при увеличении размера выборки, что имеет важные последствия для понимания глубинного обучения и разработки методов определения необходимого объема данных.
Исследование опубликовано в Doklady Mathematics. Нейронные сети — мощный инструмент современного искусственного интеллекта, лежащий в основе множества технологий, от распознавания лиц на смартфонах до беспилотных автомобилей и медицинских диагнозов. Эти сложные математические модели, вдохновленные строением человеческого мозга, обучаются на огромных массивах данных. Процесс обучения, по сути, является поиском оптимальных настроек параметров нейронной сети, которые минимизируют ошибки предсказаний.
Ключевым понятием здесь является функция потерь. Это математическая мера того, насколько «неправильно» работает нейросеть на данном этапе обучения. Чем ниже значение функции потерь, тем лучше сеть справляется с задачей. Эту функцию можно изобразить подобно тому, как изображают карту местности с горами и долинами. Каждая точка на этой карте соответствует определенному набору параметров нейросети, а высота в этой точке — значению функции потерь. Такая многомерная «карта» называется ландшафтом функции потерь.
Обучение нейросети — это как спуск с горы в самую глубокую долину на этой карте. Однако ландшафт потерь современных нейросетей чрезвычайно сложен, с бесчисленным количеством «локальных минимумов» (небольших долин) и потенциально одним или несколькими «глобальными минимумами» (самыми глубокими точками). Найти хороший минимум — непростая задача.
Ученые давно изучают геометрию этого ландшафта. Например, известно, что более «плоские», широкие долины часто соответствуют моделям, которые лучше обобщают – то есть хорошо работают не только на обучающих данных, но и на новых, ранее не виданных примерах. Для анализа формы ландшафта, особенно кривизны вокруг минимумов, используется математический инструмент — матрица Гессе, содержащая вторые производные функции потерь. Анализ спектра Гессиана (набора его собственных значений) выявил характерные особенности: большинство значений близки к нулю, но есть и несколько больших значений, указывающих на направления резкого изменения потерь.
Однако, несмотря на значительный прогресс в понимании «статичной» геометрии ландшафта для заданного набора данных, оставался открытым фундаментальный вопрос: как этот ландшафт изменяется, когда мы добавляем в обучающую выборку новые данные? Становится ли он стабильнее? Сходится ли к какой-то определенной форме? Именно эту «белую зону» и взялись исследовать авторы новой работы.
Исследователи из МФТИ поставили перед собой четкую цель: понять и количественно описать, как меняется ландшафт функции потерь – в частности, значение самой функции потерь в окрестности найденного минимума – при добавлении в обучающую выборку всего одного нового объекта. Их интересовало, будет ли эта разница уменьшаться с ростом общего числа объектов, и если да, то с какой скоростью.
Они сначала обучали сеть на всем доступном наборе данных, чтобы найти точку минимума (или близкую к нему). Затем они брали подмножества данных разного размера (от малого до большого), добавляли по одному объекту и измеряли, насколько в среднем изменяется значение функции потерь в найденной точке минимума. Этот процесс повторялся многократно для усреднения результатов. Эксперименты проводились как с использованием сырых пикселей изображений в качестве входа, так и с использованием признаков, предварительно извлеченных из изображений с помощью мощной предобученной модели.
И теоретический анализ, и экспериментальные данные привели к одному и тому же выводу: ландшафт функции потерь действительно стабилизируется (почти перестает меняться) по мере увеличения размера выборки. Теоретический анализ показал, что разница между средним значением потерь для выборки из k+1 объекта и выборки из k объектов (в окрестности минимума) стремится к нулю, когда k стремится к бесконечности. При этом полученная верхняя граница для этой разницы убывает примерно как 1/k (сублинейная скорость сходимости). Теоретические оценки также предсказали, как на эту сходимость влияют параметры сети: увеличение числа слоев L может замедлить сходимость (экспоненциальная зависимость в оценке), в то время как влияние ширины слоев h оказалось более сложным (степенная зависимость, но с множителем, зависящим от величины весов сети).
Эксперименты подтвердили результаты теоретического анализа на всех использованных наборах данных и для разных архитектур. Во всех экспериментах наблюдалось четкое уменьшение разницы значений функции потерь при увеличении размера выборки, что подтверждает теоретический вывод о сходимости. Влияние архитектуры также качественно совпало с теорией: добавление слоев действительно несколько увеличивало измеряемую разницу (замедляло сходимость), а увеличение ширины слоев, вопреки интуиции и грубой теоретической оценке, уменьшало разницу.
Исследователи объясняют это тем, что для относительно простых задач классификации изображений более широкие сети достигают лучших (более низких) значений потерь, и их ландшафт быстрее стабилизируется, а также тем, что константы, ограничивающие веса сети на практике, могут быть малы. Важно, что сходимость наблюдалась независимо от того, подавались ли на вход сети сырые пиксели или предобработанные признаки.
«Мы привыкли думать о ландшафте потерь как о статичной карте для конкретного набора данных, – рассказал Андрей Грабовой, доцент кафедры интеллектуальных систем МФТИ – Наша работа показывает его динамическую природу: как он ‘устаканивается’ и перестает существенно меняться по мере того, как сеть ‘видит’ все больше и больше примеров. Это предсказуемое поведение открывает двери к пониманию того, когда дальнейшее увеличение данных уже не приносит кардинальных изменений в локально выученную модель, что критически важно для эффективного обучения».
Никита Киселев, студент пятого курса МФТИ, добавил: «Главный результат нашего исследования в том, что мы впервые систематически исследовали вопрос о влиянии размера выборки на геометрию ландшафта потерь. Предыдущие исследования фокусировались либо на статичной геометрии для фиксированного датасета, либо на динамике обучения во времени (по итерациям оптимизации), но не на том, как сам ландшафт эволюционирует с количеством данных. Мы не только поставили этот вопрос, но и предоставили теоретический анализ сходимости, осуществив вывод математических оценок скорости стабилизации ландшафта, показали, как количество слоев нейронной сети и их ширина влияют на эту сходимость, а также проверили выводы на практике на реальных задачах».
Понимание того, что ландшафт потерь сходится, имеет значительные практические последствия. Самое очевидное из них заключается в том, что на основе этого можно разработать методы, которые отслеживают эту стабилизацию в процессе добавления данных и позволяют эффективно определять достаточный размер выборки. Как только ландшафт перестает существенно меняться, можно сделать вывод, что для данной архитектуры и задачи данных, вероятно, достаточно. Это позволит экономить огромные ресурсы на сбор, разметку и обработку избыточных данных, а также на вычислительные мощности для обучения.
Менее очевидные применения связаны с тем, что понимание того, как меняется ландшафт функции потерь, может помочь в разработке более оптимальных вычислительных архитектур и более эффективных адаптивных алгоритмов машинного обучения нейронных сетей.
В поиске сигналов от внеземных цивилизаций ученые решили сосредоточиться не на целенаправленных посланиях человечеству, а на случайных «утечках информации» из межпланетного пространства гипотетической обитаемой системы. По расчетам, в определенные моменты до нас могут доходить сигналы внеземной космической связи. Кстати, благодаря «общению» Земли с марсианскими и другими зондами мы тоже постоянно невольно сообщаем о себе в глубокий космос.
Группа ученых из Индии с помощью дронов впервые задокументировала полный цикл брачного поведения горбатых дельфинов вида Sousa plumbea. Исследователи полагают, что наблюдения помогут в сохранении этих животных, обитающих в прибрежных водах Индийского океана и страдающих от деятельности человека.
Модель, представленная учеными из коллаборации DESI и Мичиганского университета (США), может перевернуть представления о происхождении темной энергии. Авторы нового исследования полагают, что черные дыры, поглощая вещество, постепенно преобразовывают его в энергию, гипотетически ответственную за расширение Вселенной.
К 2025 году около 30 стран приняли программы по развитию водородной энергетики, а совокупный объем инвестиций в эту область превысил 150 миллиардов долларов. Эксперты полагают, что замена дизельных авто на водородные снизит выбросы на 80-90%, а водородные самолеты способны уменьшить углеродный след на 50-75%. Но при использовании водорода в двигателях внутреннего или внешнего сгорания, происходит взаимодействие с металлом, что наиболее опасно при высоких температурах. Это может вызвать их разрушение, в результате чего возникает риск пожара или взрыва с тяжелыми последствиями для пассажиров. Ученые Пермского Политеха впервые выяснили, как водород влияет на металлы в условиях экстремальных температур (800 градусов и выше), в которых работают двигатели самолетов и машин. Это продвинет авиационную, машиностроительную и нефтегазовую отрасли в безопасном использовании водорода в качестве источника энергии.
Ученые обнаружили косвенные доказательства существования мира размером с Землю за орбитой Нептуна. Эта гипотетическая планета отличается от предполагаемой Девятой планеты не только размером, но и гравитационным влиянием на другие объекты.
Большие кошки (Pantherinae) обычно охотятся на животных своего или меньшего размера. У снежных барсов, как выяснилось, другие предпочтения. Новое исследование показало, что ирбисы чаще нападают на взрослых горных козлов, которые как минимум вдвое превосходят хищников в весе. Ученые объяснили, с чем может быть связан такой выбор добычи.
Примерно 12 800 лет назад в Северном полушарии началось резкое изменение климата, которое сопровождалось вымиранием мегафауны и угасанием культуры Кловис. Такое могло произойти, например, из-за прорыва пресных вод в Атлантику или мощного вулканического извержения. Несколько лет назад ученые обнаружили места на суше с повышенным содержанием элементов платиновой группы, прослоями угля, микрочастицами расплава. По их мнению, это может быть признаком пребывания Земли в потоке обломков кометы или астероида. В новой работе впервые представлены доказательства кометного события в позднем дриасе из морских осадочных толщ.
Возраст находок — около 5500 лет, они лежат во множестве круглых ям, чьи стены укреплены кирпичом. Среди обнаруженных орудий из кремня есть и сотни неиспользованных, которые могут быть ритуальным подношением богам.
Гостингом (от английского «призрак») называют ситуацию, когда человек прекращает общение или отношения, «пропадая с радаров» без объяснения причин. Исследователи из США сымитировали такое поведение, а затем проанализировали реакцию людей на него.
Вы попытались написать запрещенную фразу или вас забанили за частые нарушения.
ПонятноИз-за нарушений правил сайта на ваш аккаунт были наложены ограничения. Если это ошибка, напишите нам.
ПонятноНаши фильтры обнаружили в ваших действиях признаки накрутки. Отдохните немного и вернитесь к нам позже.
ПонятноМы скоро изучим заявку и свяжемся с Вами по указанной почте в случае положительного исхода. Спасибо за интерес к проекту.
Понятно
Комментарии