Уведомления
Авторизуйтесь или зарегистрируйтесь, чтобы оценивать материалы, создавать записи и писать комментарии.
Авторизуясь, вы соглашаетесь с правилами пользования сайтом и даете согласие на обработку персональных данных.
Искусственный интеллект поможет точнее прогнозировать риски сложных заболеваний
Разработанные в Центре искусственного интеллекта НИУ ВШЭ нейросетевые модели значительно улучшают прогнозирование риска ожирения, диабета первого типа, псориаза и других многофакторных заболеваний. Совместное исследование с компанией Genotek показало, что алгоритмы глубокого обучения эффективнее традиционных методов, особенно при сложных взаимодействиях генов (эпистазах).
Результаты опубликованы в журнале Frontiers in Medicine. Традиционные методы оценки генетического риска, основанные на линейной регрессии, не учитывают сложные взаимодействия генов, влияющие на развитие заболеваний. Эти эпистатические эффекты трудно уловить с помощью классических моделей, что снижает точность прогнозов.
Чтобы преодолеть эти ограничения, исследователи смоделировали данные с разными типами эпистаза — аддитивным, мультипликативным и пороговым — и обучили нейросетевые модели на генетических данных более чем 58 тысяч человек европейского происхождения. В ходе работы симулировались различные сценарии взаимодействия генов и оценивалось их влияние на риск развития заболеваний.
Применение методов глубокого обучения, в частности рекуррентных нейронных сетей (RNN), позволило существенно повысить точность прогнозирования. Наиболее заметное улучшение достигнуто при оценке риска диабета первого типа: показатель площади под ROC-кривой (AUC) составил 0,823 для моделей RNN.
«Результаты нашего исследования показывают новые возможности для персонализированной медицины и профилактики. Если мы сможем точнее определять индивидуальные риски, это поможет врачам разрабатывать более эффективные стратегии лечения и предотвращения болезней», — отмечает Мария Попцова, заведующая Международной лабораторией биоинформатики.
Таким образом, исследование подтверждает высокую эффективность нелинейных моделей машинного обучения в предсказании генетических рисков, что открывает путь к более точной персонализации медицинских рекомендаций и терапии.
«Генетический паспорт становится неотъемлемой частью современной персонализированной медицины. Недостаточно просто расшифровать геном человека — необходимо максимально информативно интерпретировать результаты. Для этого мы постоянно работаем над обучением новых моделей для оценки рисков мультифакторных заболеваний. Наше совместное исследование показывает, что нейросети могут быть эффективными и в этой области», — рассказывает Александр Ракитько, директор по науке Genotek.
На основе проведенного исследования команда Центра искусственного интеллекта НИУ ВШЭ разработала специальное программное обеспечение — «Модели глубинного обучения для полигенной оценки риска». Программа позволяет прогнозировать вероятность развития заболеваний, анализируя индивидуальные вариации в геноме. Эта разработка уже лицензирована компанией Genotek для дальнейшего применения в практических генетических исследованиях.
Ученые из Института космических исследований РАН и МФТИ раскрыли химический механизм, объясняющий появление молекул воды на поверхностях астероидов.
Ученые Томского государственного университета изучили историческую память современного человека и его восприятие событий Гражданской войны в России (1917–1922 годы). Эксперимент проводился с применением айтрекинговых технологий: испытуемым нужно было просмотреть визуальные образы и символы на плакатах эпохи Гражданской войны. Выяснилось, что люди старшего возраста интуитивно в большей мере симпатизируют красным, образ Белого движения размыт в сознании людей, и до сих пор в обществе нет ясного и однозначного отношения к Белой армии.
Исследователи Санкт-Петербургского государственного университета разработали эффективный способ обнаружения в крови важнейшего биомаркера иммунитета — неоптерина — с помощью нанотехнологий и лазера.
Астрономы недавно проанализировали базу данных о падающих на Землю объектах и пришли к выводу, что два из них прибыли из межзвездного пространства. Известна не только дата, но и место падения каждого из них.
На наземные растения, в основном деревья, приходится 80 процентов всей биомассы Земли, 450 миллиардов тонн сухого углерода и более двух триллионов тонн «живого веса». Поэтому идея сажать новые леса для связывания СО2 из атмосферы долго казалась логичной. Новые данные показали, что реальность заметно сложнее.
«Любить лишь можно только раз», — писал поэт Сергей Есенин, а герои культовых сериалов приходили к выводу, что «настоящая» влюбленность случается в жизни максимум дважды. Однако ни один из этих тезисов не подкреплен научными данными. Американские исследователи подошли к вопросу иначе: опросили более 10 тысяч человек и вывели среднее число сильных влюбленностей, возможных в течение жизни.
Астрономы недавно проанализировали базу данных о падающих на Землю объектах и пришли к выводу, что два из них прибыли из межзвездного пространства. Известна не только дата, но и место падения каждого из них.
Международная команда палеонтологов описала новый вид динозавра размером с крупную современную птицу. Он носил на голове плотный костяной нарост, который эти животные, возможно, использовали для внутривидовых разборок. Находка показывает, что даже мелкие хищники мелового периода могли решать конфликты не только когтями и зубами, но и ударами головой.
Образцы грунта, взятые астронавтами полвека назад, вложили еще один важный кирпич в здание научной картины мира: гипотеза о том, что Земля исходно была сухой, не стыкуется с фактами. Похоже, идею о невозможности сохранения большого количества воды на «теплых» планетах придется пересмотреть.
Вы попытались написать запрещенную фразу или вас забанили за частые нарушения.
Понятно
Из-за нарушений правил сайта на ваш аккаунт были наложены ограничения. Если это ошибка, напишите нам.
Понятно
Наши фильтры обнаружили в ваших действиях признаки накрутки. Отдохните немного и вернитесь к нам позже.
Понятно
Мы скоро изучим заявку и свяжемся с Вами по указанной почте в случае положительного исхода. Спасибо за интерес к проекту.
Понятно
