• Добавить в закладки
  • Facebook
  • Twitter
  • Telegram
  • VK
  • Печать
  • Email
  • Скопировать ссылку
30 апреля, 11:00
НИУ ВШЭ
115

Искусственный интеллект поможет точнее прогнозировать риски сложных заболеваний

❋ 4.4

Разработанные в Центре искусственного интеллекта НИУ ВШЭ нейросетевые модели значительно улучшают прогнозирование риска ожирения, диабета первого типа, псориаза и других многофакторных заболеваний. Совместное исследование с компанией Genotek показало, что алгоритмы глубокого обучения эффективнее традиционных методов, особенно при сложных взаимодействиях генов (эпистазах).

ИИ поможет точнее прогнозировать риск ожирения / © Ehimetalor Akhere Unuabona, unsplash.com

Результаты опубликованы в журнале Frontiers in Medicine. Традиционные методы оценки генетического риска, основанные на линейной регрессии, не учитывают сложные взаимодействия генов, влияющие на развитие заболеваний. Эти эпистатические эффекты трудно уловить с помощью классических моделей, что снижает точность прогнозов.

Чтобы преодолеть эти ограничения, исследователи смоделировали данные с разными типами эпистаза — аддитивным, мультипликативным и пороговым — и обучили нейросетевые модели на генетических данных более чем 58 тысяч человек европейского происхождения. В ходе работы симулировались различные сценарии взаимодействия генов и оценивалось их влияние на риск развития заболеваний.

Применение методов глубокого обучения, в частности рекуррентных нейронных сетей (RNN), позволило существенно повысить точность прогнозирования. Наиболее заметное улучшение достигнуто при оценке риска диабета первого типа: показатель площади под ROC-кривой (AUC) составил 0,823 для моделей RNN.

«Результаты нашего исследования показывают новые возможности для персонализированной медицины и профилактики. Если мы сможем точнее определять индивидуальные риски, это поможет врачам разрабатывать более эффективные стратегии лечения и предотвращения болезней», — отмечает Мария Попцова, заведующая Международной лабораторией биоинформатики. 

Таким образом, исследование подтверждает высокую эффективность нелинейных моделей машинного обучения в предсказании генетических рисков, что открывает путь к более точной персонализации медицинских рекомендаций и терапии.

«Генетический паспорт становится неотъемлемой частью современной персонализированной медицины. Недостаточно просто расшифровать геном человека — необходимо максимально информативно интерпретировать результаты. Для этого мы постоянно работаем над обучением новых моделей для оценки рисков мультифакторных заболеваний. Наше совместное исследование показывает, что нейросети могут быть эффективными и в этой области», — рассказывает Александр Ракитько, директор по науке Genotek.

На основе проведенного исследования команда Центра искусственного интеллекта НИУ ВШЭ разработала специальное программное обеспечение — «Модели глубинного обучения для полигенной оценки риска». Программа позволяет прогнозировать вероятность развития заболеваний, анализируя индивидуальные вариации в геноме. Эта разработка уже лицензирована компанией Genotek для дальнейшего применения в практических генетических исследованиях.

Нашли опечатку? Выделите фрагмент и нажмите Ctrl + Enter.
Национальный исследовательский университет «Высшая школа экономики» — один из крупнейших и самых востребованных вузов России. В университете учится 54 тысячи студентов и работает почти 4,5 тысячи учёных и преподавателей. НИУ ВШЭ ведёт фундаментальные и прикладные исследования в области социально-экономических, гуманитарных, юридических, инженерных, компьютерных, физико-математических наук, а также креативных индустрий. В университете действуют 47 центров превосходства, или международных лабораторий. Вышка объединяет ведущих мировых исследователей в области изучения мозга, нейротехнологий, биоинформатики и искусственного интеллекта. Университет входит в первую группу программы «Приоритет-2030» в направлении «Исследовательское лидерство». Кампусы НИУ ВШЭ расположены в четырех городах — Москве, Санкт-Петербурге, Нижнем Новгороде и Перми, а также в цифровом пространстве — «Вышка Онлайн».
Подписывайтесь на нас в Telegram, Яндекс.Новостях и VK
Предстоящие мероприятия
4 июля, 11:27
НовГУ

Исследование НовГУ показало, что атлетическая гимнастика — один из самых эффективных способов борьбы с ожирением, в отличие, например, от бега. Тренировки с отягощениями не только помогают сжечь жир, но и укреплять мышцы, при этом щадя суставы и сердечно-сосудистую систему. Назван и оптимальный комплекс упражнений для таких людей: три силовые тренировки в неделю по 40–90 минут.

4 июля, 18:38
Evgenia Vavilova

Специалисты центра изучения недр «Геосфера» извлекают из образцов грунта все необходимые данные о действующих и перспективных месторождениях нефти. Рутинные операции с керном делегированы роботам. Умные помощники трудятся 24/7 и позволяют исследователям сосредоточиться на научных и технологических задачах.

4 июля, 11:56
Александр Березин

Сочетание уже подписанных решений конгресса и Белого дома на данный момент ведет к ситуации, когда после 1 октября 2025 года будет прекращено финансирование целого ряда активно работающих космических аппаратов. Речь идет об автоматических межпланетных станциях, разбросанных на девяти миллиардах километров. Все они технически вполне работоспособны и могли бы прослужить еще немало лет.

4 июля, 11:27
НовГУ

Исследование НовГУ показало, что атлетическая гимнастика — один из самых эффективных способов борьбы с ожирением, в отличие, например, от бега. Тренировки с отягощениями не только помогают сжечь жир, но и укреплять мышцы, при этом щадя суставы и сердечно-сосудистую систему. Назван и оптимальный комплекс упражнений для таких людей: три силовые тренировки в неделю по 40–90 минут.

2 июля, 11:17
Юлия Тарасова

Результаты эксперимента в США в будущем могут позволить добиться разрешения на использование отработанной конопли в качестве кормовой добавки в животноводстве.

4 июля, 18:38
Evgenia Vavilova

Специалисты центра изучения недр «Геосфера» извлекают из образцов грунта все необходимые данные о действующих и перспективных месторождениях нефти. Рутинные операции с керном делегированы роботам. Умные помощники трудятся 24/7 и позволяют исследователям сосредоточиться на научных и технологических задачах.

17 июня, 16:49
Адель Романова

Радиотелескопы уловили очень короткий сигнал, и по его характеристикам стало ясно, что он не может быть естественного происхождения. Астрономы пришли к выводу, что источник находился в околоземном пространстве — там, где уже более полувека летает «мертвый» аппарат NASA.

25 июня, 15:19
ФизТех

Группа российских ученых из Института прикладной математики имени М. В. Келдыша РАН и МФТИ провела детальное численное исследование источников шума, генерируемых крылом прототипа сверхзвукового бизнес-джета в режиме посадки. Эта работа, сочетающая передовые методы вычислительной гидродинамики и аэроакустики, впервые позволила с высокой точностью локализовать и охарактеризовать основные зоны шумообразования вблизи полноразмерной геометрии крыла модели прототипа сверхзвукового пассажирского самолета в посадочной конфигурации.

2 июля, 11:17
Юлия Тарасова

Результаты эксперимента в США в будущем могут позволить добиться разрешения на использование отработанной конопли в качестве кормовой добавки в животноводстве.

[miniorange_social_login]

Комментарии

Написать комментарий
Подтвердить?
Подтвердить?
Причина отклонения
Подтвердить?
Не получилось опубликовать!

Вы попытались написать запрещенную фразу или вас забанили за частые нарушения.

Понятно
Жалоба отправлена

Мы обязательно проверим комментарий и
при необходимости примем меры.

Спасибо
Аккаунт заблокирован!

Из-за нарушений правил сайта на ваш аккаунт были наложены ограничения. Если это ошибка, напишите нам.

Понятно
Что-то пошло не так!

Наши фильтры обнаружили в ваших действиях признаки накрутки. Отдохните немного и вернитесь к нам позже.

Понятно
Лучшие материалы
Закрыть
Войти
Регистрируясь, вы соглашаетесь с правилами использования сайта и даете согласие на обработку персональных данных.
Ваша заявка получена

Мы скоро изучим заявку и свяжемся с Вами по указанной почте в случае положительного исхода. Спасибо за интерес к проекту.

Понятно