Уведомления
Авторизуйтесь или зарегистрируйтесь, чтобы оценивать материалы, создавать записи и писать комментарии.
Авторизуясь, вы соглашаетесь с правилами пользования сайтом и даете согласие на обработку персональных данных.
В Пермском Политехе нашли способ выявления микропластика в природе
По данным Государственного доклада за 2022 год, объемы твердых коммунальных отходов (ТКО) в России составили почти 46 миллионов тонн, из них пять миллионов — пластиковый мусор. При этом ежегодно только 14–18 процентов от его общего количества собирается для повторного использования, а остальное отправляется на захоронение. Частицы микропластика обнаружены во всех сферах природной среды, а также в живых организмах. Во всем мире ищут способы быстро и точно находить пластиковые частицы в почве, воде и воздухе. Ученые ПНИПУ разработали технологию определения микропластика с помощью нейронных сетей и машинного зрения.
Исследование опубликовано в материалах всероссийской научно-практической конференции «Химия. Экология. Урбанистка» 2024 год. Работа проводилась в рамках программы «Сириус. Лето».
Полимерные материалы разлагаются в среднем от 400 до 700 лет. Под воздействием природных факторов, например, прямого ультрафиолетового излучения, они распадаются на частицы микропластика размером менее пяти миллиметров и встраиваются в сложные среды, смешиваясь с ними. Его находят в воде, почве и некоторых видах пищевых продуктов, например, морской рыбе или растениях.
Микропластик принимает различные формы и имеет разнородный состав, поэтому определение его количества и свойств требует много времени. Сейчас все образцы изучают вручную с помощью фильтрации, микроскопов, спектрального анализа и некоторых физико-химических методов. Этот процесс весьма трудоемкий.
Ученые Пермского Политеха разработали способ определения частиц микропластика в компонентах природной среды с применением компьютерного зрения и нейронных сетей. Обучили нейросеть выделять и определять вид микропластика. Методы машинного обучения повышают точность результатов и скорость обработки образцов в несколько раз. Это значительно сократит время и затраты, связанные с ошибками.
«Для проведения исследований мы использовали искусственно подготовленные пробы путем дробления нескольких видов пластика: полиэтилентерефталат, полипропилен, полиэтилен низкой плотности. Предварительно полимерные отходы промывали, измельчали и просеивали через сито с величиной ячеек один миллиметр. После этого пластик смешивали с песком для имитации условий в окружающей среде. Для определения частиц использовали метод микроскопирования c увеличением в 40 раз. Так мы собрали массив обучающей выборки из 100 изображений, и применили его для обучения нейронной сети», – поделился магистр кафедры «Охраны окружающей среды» ПНИПУ Кирилл Аристов.
Полученный набор данных разделили на три выборки: 89 процентов изображений использовались для обучения нейронной сети, шесть процентов – для валидации, на ее основе производится промежуточная проверка, и пять процентов для теста, которая нужна для окончательной проверки.
«Для эффективного обучения нужно много повторений, иначе нейронная сеть работает неточно. Поэтому обучение проводится в несколько циклов. Чем их больше, тем лучше натренирована нейросеть. Мы производили обучение для 30 циклах. По результатам средняя точность распознавания микропластика составила 82,63 процента, что считается довольно высокой», – поделился магистр кафедры «Автоматика и телемеханика» ПНИПУ Ростислав Кокоулин.

«Использование компьютерного зрения и нейронных сетей являются многообещающими и перспективным методами в решении многих экологических задач, в том числе идентификации загрязнителей в объектах окружающей среды. Наши исследования в этой области будут продолжены, и мы надеемся получить достойные результаты», – дополнила доктор технических наук, профессор кафедры «Охрана окружающей среды» ПНИПУ Наталья Слюсарь.
Ученые Пермского Политеха разработали технологию определения микропластика с помощью нейросети. Она автоматизирует процесс обнаружения и классификации пластиковых частиц, ускорит обработку информации и позволит контролировать состояние окружающей среды.
Современная экономика остро зависит от стабильности топливно-энергетического комплекса. Однако его основа, нефтедобыча, сталкивается с истощением легкодоступных запасов. Для оценки их потенциала инженеры используют геолого-гидродинамическое моделирование, позволяющее испытывать стратегии разработки в виртуальной среде и создавать цифровых двойников месторождений. Тем не менее, традиционные подходы к проектированию, основанные на двумерных картах, не дают точной информации о строении пластов. Это ведет к неоптимальной расстановке скважин и потере значительных объемов нефти. Ученые Пермского Политеха разработали методику генерирования множества 3D-моделей с возможностью выбора наиболее достоверных, описывающих реальное геологическое строение месторождений. Исследование позволяет существенно сократить неопределенность в оценке нефтяных запасов и уменьшить количество моделей для анализа.
Исследователи из Института искусственного интеллекта Московского государственного университета и «Яндекса» создали LORuGEC — первый открытый набор данных с примерами ошибок по сложным правилам русского языка. Они также разработали метод, помогающий обучить ИИ исправлять грамматические, пунктуационные и орфографические ошибки при генерации текстов. «Яндекс» рассказал о разработках на полях Конгресса молодых ученых.
Систематический анализ данных более четырех миллионов пациентов из Европы, США, Азии и Океании показал, что госпитализация из-за таких тяжелых инфекций, как сепсис и пневмония, значительно повышает риск развития деменции.
Так называемые зумеры и альфа, несмотря на молодой возраст, уже формируют ключевые поведенческие и потребительские тренды. Ученые Пермского Политеха рассказали, почему обозначение поколений начали с конца алфавита, как альфа и зумеры отличаются в способности к терпеливости, совмещении цифрового и реального «Я», подходу к профессиональной деятельности и отношении к финансам, какое мышление пришло на смену клиповому и как использование искусственного интеллекта повлияет на авторитет родителей.
Коллектив российских ученых из МИРЭА — Российского технологического университета, Центра фотоники двумерных материалов МФТИ, Института металлургии и материаловедения им. А. А. Байкова РАН и ряда других ведущих научных центров провел глубокое исследование кристаллической структуры широко используемых пьезоэлектрических материалов на основе цирконата-титаната свинца. Используя метод рентгеноструктурного анализа, исследователи впервые смогли в деталях установить, как небольшие химические добавки кардинально меняют фазовый состав керамики и напрямую определяют ее электрофизические характеристики. Это открывает путь к целенаправленному дизайну «умных» материалов с заранее заданными свойствами для передовой электроники и сенсорики.
Ученые разработали штамм цианобактерии, способный поглощать в три раза больше фосфора из сточных вод
Фосфор – элемент, играющий ключевую роль в росте растений. В сельском хозяйстве он используется в составе многих минеральных удобрений. В то же время фосфор, содержащийся в сточных водах — серьезный загрязнитель, который при попадании в водоемы нарушает баланс экосистем и вызывает цветение водорослей. Ученые Национального исследовательского центра «Курчатовский институт» и Южного федерального университета предложили новый экологичный способ выделения фосфора из сточных вод с помощью фотосинтезирующих микроорганизмов.
Человеческие языки разнообразны, но это разнообразие ограничивается повторяющимися закономерностями. Пытаясь описать правила, которым подчиняются различия в грамматике, лингвисты сформулировали ряд так называемых грамматических универсалий — утверждений, предположительно верных для всех или большинства языков мира. Международная команда ученых провела статистический анализ на материале 2430 языков и обнаружила, что соответствующими действительности можно считать около трети таких утверждений.
По расчетам, большинство «гостей» из других звездных систем летят к Земле примерно со стороны созвездия Геркулес. Скорее всего, они время от времени падают на нашу планету, просто мы еще не научились это замечать. Как удалось вычислить, чаще всего они должны падать зимой и где-то в окрестностях экватора.
Ученые открыли новый, ранее неизвестный способ передвижения бактерий по поверхностям, для которого не нужны жгутики. Эти микроорганизмы на краю колонии переваривают сахара, выделяют метаболиты и создают осмотическое давление. Оно вызывает микроскопическое «цунами», и на нем бактерии катятся вперед.
Вы попытались написать запрещенную фразу или вас забанили за частые нарушения.
Понятно
Из-за нарушений правил сайта на ваш аккаунт были наложены ограничения. Если это ошибка, напишите нам.
Понятно
Наши фильтры обнаружили в ваших действиях признаки накрутки. Отдохните немного и вернитесь к нам позже.
Понятно
Мы скоро изучим заявку и свяжемся с Вами по указанной почте в случае положительного исхода. Спасибо за интерес к проекту.
Понятно