• Добавить в закладки
  • Facebook
  • Twitter
  • Telegram
  • VK
  • Печать
  • Email
  • Скопировать ссылку
26.12.2024, 13:13
ФизТех
250

Новый метод квантования обеспечит стабильность бинарных нейронных сетей

❋ 4.4

Группа российских ученых из компании Smart Engines и МФТИ предложила новый способ квантования бинарных нейронных сетей. Им удалось добиться лучших результатов для обучения таких сетей.

Структура слоя БНС в режиме обучения / © Computer Optics 2024

Работа опубликована в журнале Computer Optics. Современные нейронные сети широко используются в самых разных областях: от обработки естественного языка и генерации изображений до распознавания символов на мобильных устройствах. В стремительно развивающемся мире искусственного интеллекта эффективность вычислений является критическим фактором. Для многих приложений, особенно для работы на маломощных устройствах (мобильные телефоны, встраиваемые системы, системы автономного вождения), критичны скорость и размер нейронной сети.

Бинарные нейронные сети (БНС)— это один из подходов к созданию компактных и быстрых сетей. В них веса и активации представляются всего одним битом информации (–1 или 1), что значительно уменьшает объем памяти, необходимый для хранения модели, и позволяет использовать быстрые побитовые операции вместо трудоемких умножений. Однако обучение БНС — сложная задача, которая долгое время сдерживала их широкое применение.

Традиционные методы обучения нейронных сетей не подходят для бинарных нейронных сетей. Основная сложность заключается в том, что функция активации (преобразование входных данных в бинарные значения) — это кусочно-постоянная функция (знаковая функция), которая имеет нулевую производную во всех точках, где эта производная определена, — затрудняет применение методов обратного распространения ошибки. Для решения этой проблемы использовались различные подходы.

Метод прямой оценки использует знаковую функцию при прямом проходе, а при обратном проходе — ее аппроксимацию для вычисления градиента. Недостатком является несоответствие градиентов и колебания весов, что приводит к медленному и нестабильному обучению.

Самобинаризующиеся нейронные сети используют гладкую аппроксимацию знаковой функции (например, гиперболический тангенс), которая постепенно приближается к знаковой функции по мере обучения. Недостатком является разрыв между обучаемой моделью и конечной бинарной моделью, что приводит к снижению точности.

Ученые из МФТИ с коллегами совершили прорыв, разработав новый метод квантования на неопределенной базе, который решает эту проблему, обеспечивая стабильное обучение и высокое качество бинарных нейронных сетей даже при ограниченном количестве параметров. Он сочетает в себе преимущества двух выше описанных методов.

Ключевой идеей квантования на основе неопределенности является использование вероятностной активации, которая учитывает неопределенность в значениях весов и активаций.

«В основе нашего метода UBQ лежит новая концепция неопределенности активаций, позволяющая получить более точную аппроксимацию бинарной функции и, как следствие, более эффективно обучать бинарные нейронные сети», — рассказал Антон Трусов, аспирант кафедры когнитивных технологий Физтех-школы прикладной математики и информатики МФТИ.

В квантовании на основе неопределенности для каждого веса и активации вычисляется значение неопределенности, отражающее, насколько сеть «уверена» в его знаке (+1 или –1). Если неопределенность высока, используется гладкая аппроксимация знаковой функции, обеспечивающая стабильное обучение.

Если неопределенность низка, применяется прямое оценивание, что способствует быстрому переходу к бинарному представлению. Кроме того, для сглаживания перехода от режима обучения к режиму исполнения авторы предлагают постепенное «замораживание» слоев сети и замену стандартной процедуры нормализации на ее упрощенный аналог.

Для проверки эффективности квантования на основе неопределенности были проведены эксперименты на широко используемых наборах данных MNIST (распознавание рукописных цифр) и CIFAR-10 (классификация изображений). Обучались несколько небольших и больших сверточных нейронных сетей с бинарными слоями, используя два описанных выше метода и новый авторский. Результаты сравнивались по точности классификации.

Эксперименты показали, что новый метод превосходит прежние при работе с небольшими сетями и демонстрирует сопоставимые результаты с методом прямой оценки для больших сетей. Кроме того, метод квантования на основе неопределенности продемонстрировал более стабильное обучение, чем метод прямой оценки, что подтверждается меньшим разбросом результатов в повторных экспериментах.

Метод квантования на основе неопределенности можно оптимизировать для различных задач и архитектур сетей. Дальнейшие исследования могут включать в себя адаптацию параметров метода для различных задач, использование динамической неопределенности весов, применение метода к другим типам квантованных сетей.

Нашли опечатку? Выделите фрагмент и нажмите Ctrl + Enter.
Московский физико-технический институт (национальный исследовательский университет), известен также как Физтех — ведущий российский вуз по подготовке специалистов в области теоретической, экспериментальной и прикладной физики, математики, информатики, химии, биологии и смежных дисциплин. Расположен в городе Долгопрудном Московской области, отдельные корпуса и факультеты находятся в Жуковском и в Москве.
Подписывайтесь на нас в Telegram, Яндекс.Новостях и VK
17 февраля, 10:00
ФизТех

Ученые из Института космических исследований РАН и МФТИ раскрыли химический механизм, объясняющий появление молекул воды на поверхностях астероидов.

17 февраля, 14:25
Любовь С.

Пройдя перигелий 30 октября 2025 года — ближайшую к Солнцу точку на своей траектории, — 3I/ATLAS буквально взорвалась активностью: объект выбросил мощные потоки воды, монооксида углерода (СО), углекислого газа (СО₂) и органических молекул, превратившись в полноценную комету. Наблюдения с помощью космической обсерватории SPHEREx впервые позволили увидеть, как вещество из другой звездной системы начинает полностью испаряться под Солнцем, раскрывая свой изначальный химический состав.

17 февраля, 09:00
ТГУ

Ученые Томского государственного университета изучили историческую память современного человека и его восприятие событий Гражданской войны в России (1917–1922 годы). Эксперимент проводился с применением айтрекинговых технологий: испытуемым нужно было просмотреть визуальные образы и символы на плакатах эпохи Гражданской войны. Выяснилось, что люди старшего возраста интуитивно в большей мере симпатизируют красным, образ Белого движения размыт в сознании людей, и до сих пор в обществе нет ясного и однозначного отношения к Белой армии.

17 февраля, 10:00
ФизТех

Ученые из Института космических исследований РАН и МФТИ раскрыли химический механизм, объясняющий появление молекул воды на поверхностях астероидов.

13 февраля, 13:18
Игорь Байдов

Приблизительно 4,5 тысячи лет назад в Британии произошла быстрая и масштабная смена населения. Неолитические народы, построившие Стоунхендж и большинство других памятников, практически исчезли, их заменили представители другой культуры. Долгое время археологи спорили, откуда пришли новые люди, которым так быстро удалось покорить остров. Ответ нашла международная команда генетиков.

17 февраля, 09:30
СПбГУ

Исследователи Санкт-Петербургского государственного университета разработали эффективный способ обнаружения в крови важнейшего биомаркера иммунитета — неоптерина — с помощью нанотехнологий и лазера.

12 февраля, 07:52
Адель Романова

Астрономы недавно проанализировали базу данных о падающих на Землю объектах и пришли к выводу, что два из них прибыли из межзвездного пространства. Известна не только дата, но и место падения каждого из них.

28 января, 10:50
Игорь Байдов

Международная команда палеонтологов описала новый вид динозавра размером с крупную современную птицу. Он носил на голове плотный костяной нарост, который эти животные, возможно, использовали для внутривидовых разборок. Находка показывает, что даже мелкие хищники мелового периода могли решать конфликты не только когтями и зубами, но и ударами головой.

26 января, 14:26
Александр Березин

Образцы грунта, взятые астронавтами полвека назад, вложили еще один важный кирпич в здание научной картины мира: гипотеза о том, что Земля исходно была сухой, не стыкуется с фактами. Похоже, идею о невозможности сохранения большого количества воды на «теплых» планетах придется пересмотреть.

[miniorange_social_login]

Комментарии

Написать комментарий
Подтвердить?
Подтвердить?
Причина отклонения
Подтвердить?
Не получилось опубликовать!

Вы попытались написать запрещенную фразу или вас забанили за частые нарушения.

Понятно
Жалоба отправлена

Мы обязательно проверим комментарий и
при необходимости примем меры.

Спасибо
Аккаунт заблокирован!

Из-за нарушений правил сайта на ваш аккаунт были наложены ограничения. Если это ошибка, напишите нам.

Понятно
Что-то пошло не так!

Наши фильтры обнаружили в ваших действиях признаки накрутки. Отдохните немного и вернитесь к нам позже.

Понятно
Лучшие материалы
Закрыть
Войти
Регистрируясь, вы соглашаетесь с правилами использования сайта и даете согласие на обработку персональных данных.
Ваша заявка получена

Мы скоро изучим заявку и свяжемся с Вами по указанной почте в случае положительного исхода. Спасибо за интерес к проекту.

Понятно