Уведомления
Авторизуйтесь или зарегистрируйтесь, чтобы оценивать материалы, создавать записи и писать комментарии.
Авторизуясь, вы соглашаетесь с правилами пользования сайтом и даете согласие на обработку персональных данных.
Физики разработали способ концентрировать свет с помощью стены
Ученые нашли эффективную конфигурацию фотонного кристалла с функциональной «стеной» под углом к волноводу. Созданная структура концентрирует свет в области, сравнимой с длиной волны излучения.
Иногда ученым и инженерам нужно сконцентрировать свет в малом объеме. Они делают это для повышения эффективности оптических устройств, уменьшения их размеров и развития технологий квантовых вычислений. В идеале исследователям хотелось бы уметь концентрировать свет небольшим устройством в область, сравнимую по размерам с длиной волны этого света.
До сих пор было известно два подхода к концентрации света: с помощью оптических резонаторов или волноводов, которые сжимают свет. Первый метод использует эффект резонанса, и физические размеры устройства подобраны так, чтобы усиливать одну точно выбранную длину волны. Второй работает по методу оптической линзы, но требует большого размера устройства.
Международная команда физиков продемонстрировала новый способ фокусировки света на малом масштабе. Ключевым элементом новой методики стала топология физической системы. Ученые используют для концентрации света фотонные кристаллы. Их метод работает в более широком диапазоне длин волн по сравнению с альтернативными подходами. Результаты исследования опубликованы в журнале Science Advances.
«Фотонные кристаллы — кремниевые пластины с повторяющимся регулярным узором из микроскопических отверстий, которые в принципе препятствуют распространению света в материале. Но если разместить рядом два таких кристалла с зеркально отраженным узором, то на их границе возникает волновод, и свет может распространяться только вдоль этой границы. Особенность конструкции в том, что световое проведение „топологически защищено“: рассеяние и отражение на дефектах материала подавлены», — объяснил один из авторов исследования Даниэль Мёйс (Daniel Muis).
Исследователи экспериментально проверили, что произойдет, если такой волновод резко оборвать стеной из непроницаемого для света материала. Оказалось, что так можно сконцентрировать излучение.

Свет не может пройти сквозь стену материала, а отражение в области до ограничителя подавлено. В результате свет накапливаться перед этим барьером. Со временем излучение все же отскакивает назад по волноводу, но с задержкой. Это и приводит к локальному усилению светового поля.
Усиление светового поля в конце топологического волновода происходит, только если «стена» расположена под определенным углом к волноводу. Это показывает, что усиление света связано с топологическим подавлением обратного отражения. Устройство позволяет проводить концентрацию света в малом объеме — сопоставимом с длиной волны самого света.
Описанный учеными механизм применим к другим типам волн в структурированных средах, включая звуковые волны или даже электроны в определенных кристаллах.
«Следующим шагом может стать применение импульсного лазера, чтобы изучить временной интервал, в течение которого продолжается накопление света. Это позволит оценить максимум возможного усиления поля и использовать его в оптических чипах для управления светом», — подытожил Мёйс.
После открытия объекта 3I/ATLAS предполагалось, что ядро межзвездной кометы могло иметь гигантские размеры. Но в процессе дальнейших наблюдений выяснилось, что эти оценки были явно завышены. Недавние расчеты показали, что на самом деле 3I/ATLAS по размерам соответствует среднестатистическим или даже самым компактным кометам Солнечной системы.
Вокруг звезды HD 131488, расположенной в созвездии Центавра (Centaurus) на расстоянии около 152 световых лет от Земли, впервые зафиксировали следы монооксида углерода (CO), который образуется при столкновениях и испарении комет. Находка открывает новую страницу в изучении формирования планетных систем.
Палеонтологи описали крупнейшее в мире скопление следов динозавров: более 16 000 вмятин на площади 7500 квадратных метров. Ученые считают, что эта территория была не просто местом случайных прогулок, а оживленной трассой, где динозавры организованно мигрировали вдоль берега древнего озера.
Биологи опровергли представление о примитивности органов чувств у древнейших бесчелюстных, обнаружив у миксин огромный арсенал рецепторов для поиска добычи. Исследователи доказали, что способность различать сложные запахи и аминокислоты появилась у общего предка позвоночных задолго до возникновения челюстей.
После открытия объекта 3I/ATLAS предполагалось, что ядро межзвездной кометы могло иметь гигантские размеры. Но в процессе дальнейших наблюдений выяснилось, что эти оценки были явно завышены. Недавние расчеты показали, что на самом деле 3I/ATLAS по размерам соответствует среднестатистическим или даже самым компактным кометам Солнечной системы.
В 16.18 по московскому времени 28 декабря 2025 года с единственного гражданского космодрома на территории России произошел 17-й по счету космический запуск этого года. Перед ним на космодроме побывал корреспондент нашего издания, и вскоре мы выпустим репортаж о том, чем живет самый холодный космодром в мире.
С 2010-х в «Роскосмосе» говорили: будущая РОС сможет пролетать над полюсом, что даст ей возможности для новых научных экспериментов. Но вскоре после того, как в ноябре 2025 года Россия временно лишилась возможности запускать людей в космос, эта позиция изменилась. В результате запускать космонавтов с космодромов нашей страны станет довольно сложно.
На скалистых берегах аргентинской Патагонии разворачивается настоящая драма. Магеллановы пингвины, долгое время чувствовавшие себя в безопасности на суше в своих многотысячных колониях, столкнулись с новым и беспощадным врагом. Их извечные морские страхи — касатки и морские леопарды — теперь блекнут перед угрозой, пришедшей из глубины материка. Виновник переполоха — грациозный и мощный хищник, недавно вернувшийся на эти земли после долгого изгнания.
Среди самых интригующих открытий космического телескопа «Джеймс Уэбб» — компактные объекты, получившие название «маленькие красные точки». Их видели только в самых дальних уголках Вселенной. Большинство возникло в первый миллиард лет после Большого взрыва, и ученые предполагали, что такие источники представляют собой небольшие компактные галактики. Однако международная команда астрономов пришла к иному выводу. Они предположили, что на самом деле «маленькие красные точки» — черные дыры, окруженные массивной газовой оболочкой.
Вы попытались написать запрещенную фразу или вас забанили за частые нарушения.
Понятно
Из-за нарушений правил сайта на ваш аккаунт были наложены ограничения. Если это ошибка, напишите нам.
Понятно
Наши фильтры обнаружили в ваших действиях признаки накрутки. Отдохните немного и вернитесь к нам позже.
Понятно
Мы скоро изучим заявку и свяжемся с Вами по указанной почте в случае положительного исхода. Спасибо за интерес к проекту.
Понятно

Последние комментарии