• Добавить в закладки
  • Facebook
  • Twitter
  • Telegram
  • VK
  • Печать
  • Email
  • Скопировать ссылку
22 апреля, 19:27
Evgenia Vavilova
2,4 тыс

Физики разработали способ концентрировать свет с помощью стены

❋ 5.1

Ученые нашли эффективную конфигурацию фотонного кристалла с функциональной «стеной» под углом к волноводу. Созданная структура концентрирует свет в области, сравнимой с длиной волны излучения.

Концентрация света на границе волновода / © AMOLF
Концентрация света на границе волновода / © AMOLF

Иногда ученым и инженерам нужно сконцентрировать свет в малом объеме. Они делают это для повышения эффективности оптических устройств, уменьшения их размеров и развития технологий квантовых вычислений. В идеале исследователям хотелось бы уметь концентрировать свет небольшим устройством в область, сравнимую по размерам с длиной волны этого света.

До сих пор было известно два подхода к концентрации света: с помощью оптических резонаторов или волноводов, которые сжимают свет. Первый метод использует эффект резонанса, и физические размеры устройства подобраны так, чтобы усиливать одну точно выбранную длину волны. Второй работает по методу оптической линзы, но требует большого размера устройства.

Международная команда физиков продемонстрировала новый способ фокусировки света на малом масштабе. Ключевым элементом новой методики стала топология физической системы. Ученые используют для концентрации света фотонные кристаллы. Их метод работает в более широком диапазоне длин волн по сравнению с альтернативными подходами. Результаты исследования опубликованы в журнале Science Advances.

«Фотонные кристаллы — кремниевые пластины с повторяющимся регулярным узором из микроскопических отверстий, которые в принципе препятствуют распространению света в материале. Но если разместить рядом два таких кристалла с зеркально отраженным узором, то на их границе возникает волновод, и свет может распространяться только вдоль этой границы. Особенность конструкции в том, что световое проведение „топологически защищено“: рассеяние и отражение на дефектах материала подавлены», — объяснил один из авторов исследования Даниэль Мёйс (Daniel Muis).

Исследователи экспериментально проверили, что произойдет, если такой волновод резко оборвать стеной из непроницаемого для света материала. Оказалось, что так можно сконцентрировать излучение.

Слева: Изображение кремниевого фотонного кристалла, сделанное с помощью электронного микроскопа. Топологический волновод формируется на границе между зеленой и синей областями и заканчивается кристаллом с круглыми отверстиями с правой стороны. Справа: измерение оптической интенсивности в фотонном кристалле. Свет входит через топологический волновод слева и накапливается в конце волновода из-за подавленного обратного отражения © AMOLF

Свет не может пройти сквозь стену материала, а отражение в области до ограничителя подавлено. В результате свет накапливаться перед этим барьером. Со временем излучение все же отскакивает назад по волноводу, но с задержкой. Это и приводит к локальному усилению светового поля.

Усиление светового поля в конце топологического волновода происходит, только если «стена» расположена под определенным углом к волноводу. Это показывает, что усиление света связано с топологическим подавлением обратного отражения. Устройство позволяет проводить концентрацию света в малом объеме — сопоставимом с длиной волны самого света.

Описанный учеными механизм применим к другим типам волн в структурированных средах, включая звуковые волны или даже электроны в определенных кристаллах.

«Следующим шагом может стать применение импульсного лазера, чтобы изучить временной интервал, в течение которого продолжается накопление света. Это позволит оценить максимум возможного усиления поля и использовать его в оптических чипах для управления светом», — подытожил Мёйс.

Нашли опечатку? Выделите фрагмент и нажмите Ctrl + Enter.
Евгения Вавилова — научпоп автор, специализирующийся на популярной физике. Выпускница физического факультета, более 10 лет пишет о новейших открытиях в квантовой механике, астрофизике и теоретической физике. Евгения умеет объяснять сложные концепции простым языком и регулярно публикует материалы, основанные на первоисточниках — научных статьях и интервью с исследователями.
Подписывайтесь на нас в Telegram, Яндекс.Новостях и VK
18 ноября, 12:36
Игорь Байдов

Согласно учебникам истории, в бронзовом веке в казахской степи кочевали лишь немногочисленные племена со своими стадами. Но в начале 2000-х там обнаружили древнее поселение с остатками крупных домов, которое могло быть административным либо культурным центром. Это навело ученых на мысль, что жизнь в степи складывалась куда сложнее и была более организованной, чем предполагалось. Международная команда ученых представила новые результаты исследования этого поселения и выяснила, что на самом деле оно представляло собой крупнейший в этом регионе протогородской центр с масштабным производством оловянистой бронзы.

18 ноября, 18:24
Игорь Байдов

В темных лабиринтах подземного муравейника разыгрывается коварный сценарий, достойный политического триллера. Вместо того чтобы силой захватить трон, королева одного вида муравьев применяет хитрую тактику. Она проникает в чужую крепость и с помощью поддельного химического сигнала подстрекает верную стражу к свержению собственной повелительницы. Результат — жестокая казнь законной королевы и добровольное подчинение всего муравейника новой владычице.

19 ноября, 07:55
Игорь Байдов

Крошечная глиняная фигурка возрастом 12 тысяч лет, найденная в Израиле еще в 2019 году, долгое время озадачивала ученых. Дело в том, что на ней изображен сюжет, который никак не могли расшифровать. После тщательного анализа это удалось сделать международной команде исследователей. Они пришли к выводу, что на статуэтке, вероятно, изображен анимистический ритуал.

15 ноября, 21:54
Редакция Naked Science

Ю-Цон Тан (YuCong Tang) — концептуальный художник из Китая. Научно-фантастические мотивы — одно из основных направлений его творчества. Он исследует, как научные открытия и технологии будущего трансформируют среду обитания.

18 ноября, 12:36
Игорь Байдов

Согласно учебникам истории, в бронзовом веке в казахской степи кочевали лишь немногочисленные племена со своими стадами. Но в начале 2000-х там обнаружили древнее поселение с остатками крупных домов, которое могло быть административным либо культурным центром. Это навело ученых на мысль, что жизнь в степи складывалась куда сложнее и была более организованной, чем предполагалось. Международная команда ученых представила новые результаты исследования этого поселения и выяснила, что на самом деле оно представляло собой крупнейший в этом регионе протогородской центр с масштабным производством оловянистой бронзы.

15 ноября, 10:10
Любовь С.

Наблюдая за сверхновой 2024 ggi спустя всего 26 часов после вспышки, астрономы напрямую определили форму ударной волны в момент ее прорыва из звезды. Открытие позволит уточнить механизмы гибели массивных светил и может привести к пересмотру существующих моделей возникновения сверхновых.

25 октября, 10:40
Любовь С.

Проанализировав данные наблюдений, полученных с помощью наземных обсерваторий за последние два десятилетия, астрономы обнаружили потенциально обитаемый мир — суперземлю Gliese 251 c (GJ 251 с). Планета обращается вокруг красного карлика на расстоянии около 18 световых лет от Земли и считается одним из самых перспективных кандидатов для поисков жизни.

8 ноября, 18:29
Адель Романова

По расчетам, большинство «гостей» из других звездных систем летят к Земле примерно со стороны созвездия Геркулес. Скорее всего, они время от времени падают на нашу планету, просто мы еще не научились это замечать. Как удалось вычислить, чаще всего они должны падать зимой и где-то в окрестностях экватора.

24 октября, 14:02
РТУ МИРЭА

В современном доме, насыщенном разнообразной техникой, удлинители стали незаменимым атрибутом, позволяющим обеспечить электропитанием все необходимые устройства. Однако мало кто задумывается, что привычное использование этого аксессуара может нести серьезную угрозу безопасности. По статистике, значительная часть бытовых пожаров происходит из-за неправильной эксплуатации электропроводки и вспомогательных устройств. Какие приборы категорически нельзя подключать через удлинители и почему это может привести к трагическим последствиям, рассказывает профессор кафедры наноэлектроники РТУ МИРЭА, доктор физико-математических наук Алексей Юрасов.

[miniorange_social_login]

Комментарии

Написать комментарий
Подтвердить?
Подтвердить?
Причина отклонения
Подтвердить?
Не получилось опубликовать!

Вы попытались написать запрещенную фразу или вас забанили за частые нарушения.

Понятно
Жалоба отправлена

Мы обязательно проверим комментарий и
при необходимости примем меры.

Спасибо
Аккаунт заблокирован!

Из-за нарушений правил сайта на ваш аккаунт были наложены ограничения. Если это ошибка, напишите нам.

Понятно
Что-то пошло не так!

Наши фильтры обнаружили в ваших действиях признаки накрутки. Отдохните немного и вернитесь к нам позже.

Понятно
Лучшие материалы
Закрыть
Войти
Регистрируясь, вы соглашаетесь с правилами использования сайта и даете согласие на обработку персональных данных.
Ваша заявка получена

Мы скоро изучим заявку и свяжемся с Вами по указанной почте в случае положительного исхода. Спасибо за интерес к проекту.

Понятно