• Добавить в закладки
  • Facebook
  • Twitter
  • Telegram
  • VK
  • Печать
  • Email
  • Скопировать ссылку
11 ноября
Evgenia Vavilova
7 667

Физики впервые сняли молекулярный «электронный лед»

4.2

Ученые долго не могли получить изображения молекулярного электронного льда, потому что используемые методики разрушали объект исследования. Та же группа, что доказала существование электронного кристалла, придумала способ модифицировать сканирующий электронный микроскоп и получила первые изображения молекулы Вигнера.

Изображения, полученные с помощью сканирующего туннельного микроскопа, показывают, как электроны превращаются в одиночную молекулу Вигнера (нижний правый угол) / © Berkeley Lab
Изображения, полученные с помощью сканирующего туннельного микроскопа, показывают, как электроны превращаются в одиночную молекулу Вигнера (нижний правый угол) / © Berkeley Lab

Электроны обычно движутся сквозь материалы так быстро, что не образуют ни с чем связей. В 1930-х годах физик Юджин Вигнер (Eugene Wigner) предсказал, что электроны могут быть приведены в неподвижное состояние при низкой плотности и температурах, образуя «электронный лед», он же — Вигнеровский кристалл.

В 2021 году в Беркли (США) исследовательские группы под руководством Фэна Ванга (Feng Wang) и Майкла Кромми (Michael Crommie) доказали существование таких электронных кристаллов. Теперь те же ученые получили изображения новой квантовой фазы твердого электронного тела — молекулярного Вигнеровского кристалла. Результаты научной работы опубликованы в журнале Science.

Обычные Вигнеровские кристаллы образуют соты с упорядоченным расположением электронов. В молекулярных Вигнеровских кристаллах создаются высокоупорядоченные структуры из искусственных «молекул», каждая из которых состоит из двух или более электронов.

Долгие годы ученые пытались получить прямые изображения молекулярного Вигнеровского кристалла. Это оказалось сложной задачей, потому что молекулярный электронный лед разрушался при попытке его запечатлеть. Наконечник сканирующего туннельного микроскопа (СТМ), с помощью которого можно получить нужные изображения, разрушал электронную конфигурацию материала.

В новом исследовании ученые из Национальной лаборатории имени Лоуренса в Беркли решили эту проблему. Они разработали метод, сводящий к минимуму электрическое поле, создаваемое наконечником СТМ. С помощью этой модификации исследователи смогли снять деликатную электронную структуру молекулярного Вигнеровского кристалла.

Для экспериментов ученые разработали наноматериал под названием «скрученная дисульфид-вольфрамовая (tWS2) сверхрешетка муарового типа». Сперва они создали двухслойный дисульфид вольфрама (WS2) со слоями, уложенными друг на друга с углом поворота 58 градусов. Затем их положили на гексагональный нитрид бора (hBN) толщиной 49 нанометров и графитовый затвор. 

Применив свою СТМ-технику, физики обнаружили, что легирование сверхрешетки tWS2 электронами заполняет каждую ячейку шириной 10 нанометров всего двумя или тремя электронами. В результате эти заполненные ячейки сформировали массив электронных молекул муарового типа по всей сверхрешетке, что привело к образованию молекулярного Вигнеровского кристалла.

«Низкие температуры вместе с энергетическим потенциалом, созданным сверхрешеткой tWS2, локально удерживают электроны», — объяснил Ванг.

В дальнейшем Ванг, Кромми и их команда планируют применить свою технику СТМ для более глубокого изучения этой новой квантовой фазы и поиска возможных применений, которые она может открыть.

Нашли опечатку? Выделите фрагмент и нажмите Ctrl + Enter.
Подписывайтесь на нас в Telegram, Яндекс.Новостях и VK
Вчера, 07:26
Полина Меньшова

Со временем одни воспоминания заменяются другими, но почему люди запоминают именно то, что запоминают? На этот вопрос ответили ученые из США, проанализировав более 100 исследований эпизодической памяти.

Вчера, 09:17
Любовь

Одни из самых ярких объектов во Вселенной — квазары — представляют собой активные ядра галактик, питаемые центральными сверхмассивными черными дырами. Электромагнитное излучение, испускаемое этими объектами, позволяет астрономам изучать структуру Вселенной на ранних этапах ее развития, однако мощный радиоджет, исходящий от недавно обнаруженного экстремально яркого квазара J1601+3102, ставит под сомнение существующие представления о «космической заре».

Вчера, 19:47
Егор Быковский

О том, как совмещать успешную работу в физике и литературе, об экситонах и фотонах, о жидком свете, поляритонике и о мировом лидерстве России в этой области мы поговорили с Алексеем Кавокиным, директором Международного центра теоретической физики имени А. А. Абрикосова (МФТИ), руководителем группы квантовой поляритоники Российского квантового центра, руководителем лаборатории оптики спина Санкт-Петербургского государственного университета.

Вчера, 07:26
Полина Меньшова

Со временем одни воспоминания заменяются другими, но почему люди запоминают именно то, что запоминают? На этот вопрос ответили ученые из США, проанализировав более 100 исследований эпизодической памяти.

Вчера, 09:17
Любовь

Одни из самых ярких объектов во Вселенной — квазары — представляют собой активные ядра галактик, питаемые центральными сверхмассивными черными дырами. Электромагнитное излучение, испускаемое этими объектами, позволяет астрономам изучать структуру Вселенной на ранних этапах ее развития, однако мощный радиоджет, исходящий от недавно обнаруженного экстремально яркого квазара J1601+3102, ставит под сомнение существующие представления о «космической заре».

Вчера, 19:47
Егор Быковский

О том, как совмещать успешную работу в физике и литературе, об экситонах и фотонах, о жидком свете, поляритонике и о мировом лидерстве России в этой области мы поговорили с Алексеем Кавокиным, директором Международного центра теоретической физики имени А. А. Абрикосова (МФТИ), руководителем группы квантовой поляритоники Российского квантового центра, руководителем лаборатории оптики спина Санкт-Петербургского государственного университета.

16 ноября
Evgenia

Международная коллаборация физиков под руководством ученых из Йельского университета в США представила самые убедительные на сегодня подтверждения существования нового типа сверхпроводящих материалов. Доказательство существования нематической фазы вещества — научный прорыв, открывающий путь к созданию сверхпроводимости совершенно новым способом.

28 ноября
Елизавета Александрова

Обсерватории постоянно улавливают «мигающие» радиосигналы из глубин Вселенной. Чаще всего их источниками оказываются нейтронные звезды, которые за это и назвали пульсарами. Но к недавно обнаруженному источнику GLEAM-X J0704-37 они, по мнению астрономов, отношения не имеют.

25 ноября
Полина Меньшова

Многие одинокие люди считают, что окружающие не разделяют их взглядов. Психологи из США решили проверить, так ли это на самом деле, и обнаружили общую особенность у людей с недостаточным количеством социальных связей.

[miniorange_social_login]

Комментарии

Написать комментарий
Подтвердить?
Подтвердить?
Причина отклонения
Подтвердить?
Не получилось опубликовать!

Вы попытались написать запрещенную фразу или вас забанили за частые нарушения.

Понятно
Жалоба отправлена

Мы обязательно проверим комментарий и
при необходимости примем меры.

Спасибо
Аккаунт заблокирован!

Из-за нарушений правил сайта на ваш аккаунт были наложены ограничения. Если это ошибка, напишите нам.

Понятно
Что-то пошло не так!

Наши фильтры обнаружили в ваших действиях признаки накрутки. Отдохните немного и вернитесь к нам позже.

Понятно
Лучшие материалы
Войти
Регистрируясь, вы соглашаетесь с правилами использования сайта и даете согласие на обработку персональных данных.
Ваша заявка получена

Мы скоро изучим заявку и свяжемся с Вами по указанной почте в случае положительного исхода. Спасибо за интерес к проекту.

Понятно
Ваше сообщение получено

Мы скоро прочитаем его и свяжемся с Вами по указанной почте. Спасибо за интерес к проекту.

Понятно