• Добавить в закладки
  • Facebook
  • Twitter
  • Telegram
  • VK
  • Печать
  • Email
  • Скопировать ссылку
11.11.2024, 10:46
Evgenia Vavilova
8 020

Физики впервые сняли молекулярный «электронный лед»

❋ 4.2

Ученые долго не могли получить изображения молекулярного электронного льда, потому что используемые методики разрушали объект исследования. Та же группа, что доказала существование электронного кристалла, придумала способ модифицировать сканирующий электронный микроскоп и получила первые изображения молекулы Вигнера.

Изображения, полученные с помощью сканирующего туннельного микроскопа, показывают, как электроны превращаются в одиночную молекулу Вигнера (нижний правый угол) / © Berkeley Lab
Изображения, полученные с помощью сканирующего туннельного микроскопа, показывают, как электроны превращаются в одиночную молекулу Вигнера (нижний правый угол) / © Berkeley Lab

Электроны обычно движутся сквозь материалы так быстро, что не образуют ни с чем связей. В 1930-х годах физик Юджин Вигнер (Eugene Wigner) предсказал, что электроны могут быть приведены в неподвижное состояние при низкой плотности и температурах, образуя «электронный лед», он же — Вигнеровский кристалл.

В 2021 году в Беркли (США) исследовательские группы под руководством Фэна Ванга (Feng Wang) и Майкла Кромми (Michael Crommie) доказали существование таких электронных кристаллов. Теперь те же ученые получили изображения новой квантовой фазы твердого электронного тела — молекулярного Вигнеровского кристалла. Результаты научной работы опубликованы в журнале Science.

Обычные Вигнеровские кристаллы образуют соты с упорядоченным расположением электронов. В молекулярных Вигнеровских кристаллах создаются высокоупорядоченные структуры из искусственных «молекул», каждая из которых состоит из двух или более электронов.

Долгие годы ученые пытались получить прямые изображения молекулярного Вигнеровского кристалла. Это оказалось сложной задачей, потому что молекулярный электронный лед разрушался при попытке его запечатлеть. Наконечник сканирующего туннельного микроскопа (СТМ), с помощью которого можно получить нужные изображения, разрушал электронную конфигурацию материала.

В новом исследовании ученые из Национальной лаборатории имени Лоуренса в Беркли решили эту проблему. Они разработали метод, сводящий к минимуму электрическое поле, создаваемое наконечником СТМ. С помощью этой модификации исследователи смогли снять деликатную электронную структуру молекулярного Вигнеровского кристалла.

Для экспериментов ученые разработали наноматериал под названием «скрученная дисульфид-вольфрамовая (tWS2) сверхрешетка муарового типа». Сперва они создали двухслойный дисульфид вольфрама (WS2) со слоями, уложенными друг на друга с углом поворота 58 градусов. Затем их положили на гексагональный нитрид бора (hBN) толщиной 49 нанометров и графитовый затвор. 

Применив свою СТМ-технику, физики обнаружили, что легирование сверхрешетки tWS2 электронами заполняет каждую ячейку шириной 10 нанометров всего двумя или тремя электронами. В результате эти заполненные ячейки сформировали массив электронных молекул муарового типа по всей сверхрешетке, что привело к образованию молекулярного Вигнеровского кристалла.

«Низкие температуры вместе с энергетическим потенциалом, созданным сверхрешеткой tWS2, локально удерживают электроны», — объяснил Ванг.

В дальнейшем Ванг, Кромми и их команда планируют применить свою технику СТМ для более глубокого изучения этой новой квантовой фазы и поиска возможных применений, которые она может открыть.

Нашли опечатку? Выделите фрагмент и нажмите Ctrl + Enter.
Евгения Вавилова — научпоп автор, специализирующийся на популярной физике. Выпускница физического факультета, более 10 лет пишет о новейших открытиях в квантовой механике, астрофизике и теоретической физике. Евгения умеет объяснять сложные концепции простым языком и регулярно публикует материалы, основанные на первоисточниках — научных статьях и интервью с исследователями.
Подписывайтесь на нас в Telegram, Яндекс.Новостях и VK
Предстоящие мероприятия
16 сентября, 13:21
Адель Романова

Во время недавних наблюдений карликовой планеты Квавар что-то неожиданно почти полностью закрыло ее собой. Астрономы уверены, что это не ее спутник Вейвот и не одно из двух известных колец этого маленького мира на краю Солнечной системы.

16 сентября, 11:56
Александр Березин

Периодически нейросети в своих ответах галлюцинируют, предлагая пользующимися их услугами людям выпить яд под видом лекарства и так далее. Новая научная работа показала, что эта проблема связана с самой природой нейросети. Хотя ее вероятность можно понизить, устранить полностью невозможно.

16 сентября, 11:17
Полина Меньшова

Когда органы чувств не получают достаточного количества информации о том или ином объекте, мозг «достраивает» его образ с опорой на предыдущий опыт. Как именно это происходит, разобрались ученые из США.

12 сентября, 14:03
ТюмГУ

Исследования самодержавия могут пролить свет на феномен, исконно свойственный российской государственности, а значит, переосмыслить исторический путь России и выработку новых направлений развития, к такому выводу пришел ученый ТюмГУ.

16 сентября, 13:21
Адель Романова

Во время недавних наблюдений карликовой планеты Квавар что-то неожиданно почти полностью закрыло ее собой. Астрономы уверены, что это не ее спутник Вейвот и не одно из двух известных колец этого маленького мира на краю Солнечной системы.

15 сентября, 10:36
Игорь Байдов

Самая большая планета в Солнечной системе, всегда поражавшая воображение своими колоссальными размерами, немного сдала позиции. Новые высокоточные измерения орбитального зонда NASA показали, что Юпитер не такой большой и круглый, как считали астрономы последние 40 лет.

12 сентября, 14:03
ТюмГУ

Исследования самодержавия могут пролить свет на феномен, исконно свойственный российской государственности, а значит, переосмыслить исторический путь России и выработку новых направлений развития, к такому выводу пришел ученый ТюмГУ.

9 сентября, 11:03
Адель Романова

Третий известный межзвездный объект 3I/ATLAS летит примерно вдвое быстрее обоих своих предшественников. По расчетам, его вряд ли могло выбросить из родной планетной системы с подобной скоростью, и так разогнаться по пути он тоже не мог.

11 сентября, 12:04
ПНИПУ

Все больше покупателей начинают отказываться от привычки делать покупки на маркетплейсах, а число новых продавцов на площадках практически не увеличилось. Аналитика показывает, что за первый квартал 2025 года — прирост селлеров составил всего 0,45% по сравнению с аналогичным периодом прошлого года. В то же время, маркетплейсы активно расширяют сеть пунктов выдачи, особенно в регионах, где физическое присутствие всех брендов невозможно. Ученые Пермского Политеха рассказали, почему люди стали реже совершать покупки на маркетплейсах.

[miniorange_social_login]

Комментарии

Написать комментарий
Подтвердить?
Подтвердить?
Причина отклонения
Подтвердить?
Не получилось опубликовать!

Вы попытались написать запрещенную фразу или вас забанили за частые нарушения.

Понятно
Жалоба отправлена

Мы обязательно проверим комментарий и
при необходимости примем меры.

Спасибо
Аккаунт заблокирован!

Из-за нарушений правил сайта на ваш аккаунт были наложены ограничения. Если это ошибка, напишите нам.

Понятно
Что-то пошло не так!

Наши фильтры обнаружили в ваших действиях признаки накрутки. Отдохните немного и вернитесь к нам позже.

Понятно
Лучшие материалы
Закрыть
Войти
Регистрируясь, вы соглашаетесь с правилами использования сайта и даете согласие на обработку персональных данных.
Ваша заявка получена

Мы скоро изучим заявку и свяжемся с Вами по указанной почте в случае положительного исхода. Спасибо за интерес к проекту.

Понятно