• Добавить в закладки
  • Facebook
  • Twitter
  • Telegram
  • VK
  • Печать
  • Email
  • Скопировать ссылку
29 июня
Иван Лавренов
1 100

Ученые создали простой материал для светофильтра с регулируемой длиной волны пропускания

6.2

Исследуя гель, который образуется из расслаивающихся растворов с добавлением наночастиц диоксида кремния и затвердевает при повышении температуры, ученые обнаружили необычное и ранее неизвестное оптическое явление.

Сдвиг полосы пропускания видимого света материалом SeedGel при изменении температуры. При 29 градусах гель пропускает только красный свет, а при 27 - синий. Остальные длины волн при этом сильно рассеиваются, что заметно в виде размытого свечения на месте надписей и вокруг них. При 20оС гель обратимо распадается в прозрачную жидкость.
Зависимость полосы пропускания видимого света материалом SeedGel от температуры. При 29 градусах гель пропускает только красный свет, а при 27 – синий. Остальные длины волн при этом сильно рассеиваются, что заметно в виде размытого свечения на месте надписей и вокруг них. При 20 градусах материал превращается в прозрачную жидкость. / © https://www.nature.com/articles/s41467-022-31020-0

Одна из задач, часто встречающихся в самых разных областях технологии — и в быту, и в науке, — пропустить сквозь какое-либо устройство электромагнитное излучение некоторых длин волн и частот, но не пропустить все остальное. Проще говоря, сделать фильтр электромагнитного излучения, к которым относятся и светофильтры для фотоаппарата, и контуры настройки в радиоприемнике. Важнейшей характеристикой фильтра является его полоса – диапазон длин волн, который он пропускает или поглощает.

Светопропускание материала Seedgel при разных температурах.
Светопропускание материала Seedgel при разных температурах. / © https://www.nature.com/articles/s41467-022-31020-0

Фильтры для радиоволн обычно пропускают именно тот диапазон длин волн, который и нужен. Вдобавок их нетрудно делать настраиваемыми: радиоволновые фильтры состоят из электронных компонентов, параметры которых можно регулировать.

В более коротковолновых диапазонах электромагнитного излучения, таких как видимый свет, изготовить настраиваемый фильтр гораздо сложнее. Электронные компоненты на таких частотах не работают. В простых светофильтрах используют красители, но они обладают фиксированными полосами поглощения. Ширина и положение этих полос определяются структурой их молекул, а в молекулах, как правило, нельзя так просто взять и что-нибудь настроить.

Поскольку набор полос поглощения красителей ограничен и фиксирован, регулируемые оптические фильтры делают на основе явления интерференции и других физических явлений, и это довольно сложные приборы.

Команда ученых из Национального института стандартов и технологий (США) во главе с Юинем Си (Yuyin Xi) создала материал для перестраиваемого оптического фильтра, положение полосы пропускания которого можно регулировать простым нагревом и охлаждением. О своей разработке они доложили в журнале Nature.

Это открытие стало в некоторой мере случайным. Авторы работы исследовали свойства материала SeedGel, который подобен силикагелю и может применяться в аккумуляторах, фильтрах для воды, создании искусственных биологических тканей и многих других технологиях.

Рецепт этого чудо-материала достаточно прост. В нем есть три компонента: органический растворитель 2,6-лутидин (диметилпиридин), вода и сферические наночастицы диоксида кремния (кремнезёма) диаметром 27 нанометров.

Первая часть необычных свойств материала SeedGel заключается в том, что он твердеет при повышении температуры. При температуре ниже плюс 26 градусов Цельсия лутидин смешивается с водой, а при нагреве растворимость падает, и жидкость разделяется на два слоя, или две фазы — раствор лутидина в воде и раствор воды в лутидине. Химикам известно много систем, ведущих себя подобным образом, но здесь компоненты подобраны так, чтобы наночастицы стремились оказаться в одной из двух фаз — в водной.

До расслоения частицы равномерно распределены в жидкости, образуя прозрачный коллоидный раствор. Расслоение заставляет их «столпиться» в объеме водной фазы — вдвое меньшем, чем прежде. Частицы приходят в контакт друг с другом и сцепляются, фиксируя участки водной фазы в момент их образования и не давая им слиться друг с другом. В результате образуется твердая структура, в которой водная и органическая фазы чередуются на микроскопическом масштабе.

Структура материала SeedGel. Синим цветом показана водная фаза, желтым - органическая, а серым - кремнеземные наносферы. Размеры изображенных областей уменьшаются слева направо и составляет около 25 микрометров слева, 0,3 мкм посередине и 0,08 нм в справа (молекулы показаны не в масштабе, они меньше наносфер в десятки раз)
Структура материала SeedGel. Синим цветом показана водная фаза, желтым – органическая, а серым – кремнеземные наносферы. Размеры изображенных областей уменьшаются слева направо и составляют около 25 микрометров слева, 0,3 мкм посередине и 0,08 мкм справа. Молекулы показаны не в масштабе, они меньше наносфер в десятки раз. / © https://www.nature.com/articles/s41467-022-31020-0

Отметим особо, что размер частиц кремнезёма (27 нанометров) намного меньше длины волны видимого света (400 — 760 нанометров), и для него они с водой составляют единое целое. А размер участков фаз достигает трех-четырех микрометров, поэтому свет их «замечает» и сильно рассеивается, многократно проходя через их границы.

Вода, кремнезём и лутидин бесцветны, так что же придает гелю окраску? Оказывается, все дело в показателях преломления и дисперсии — их зависимости от длины волны, благодаря которой вещества преломляют синий свет сильнее, чем красный. В растворах показатель преломления зависит от состава, а в расслоенных жидкостях состав каждого слоя сильно зависит от температуры, подобно тому, как меняется растворимость солей в воде.

У лутидина и кремнезема показатель преломления высокий, а у воды — низкий.

При нагреве в органической фазе становится больше лутидина и меньше воды, показатель ее преломления растет. В водно-кремнеземной фазе, наоборот, концентрация лутидина с нагревом падает, а вместе с ней — показатель преломления. При определенной температуре они становятся равными друг другу, и рассеяние исчезает, ведь отклонение света на границе фаз происходит только при отличии коэффициентов преломления.

Зависимость показателя преломления (Refractive Index) от длины волны (Wavelength) в водной фазе (синие кривые) и органической фазе (желтые кривые). При повышении температуры желтые кривые сдвигаются вверх, а синие вниз, а точка пересечения смещается слева направо, то есть в сторону красного света.
Зависимость показателя преломления (Refractive Index) от длины волны (Wavelength) в водной фазе (синие кривые) и органической фазе (желтые кривые). Низкой температуре соответствуют сплошные, а высокой – пунктирные линии. При повышении температуры желтые кривые сдвигаются вверх, а синие вниз (указано черными стрелками). Точка пересечения при этом смещается слева направо, то есть в сторону красного света. / © https://www.nature.com/articles/s41467-022-31020-0

И это обнуление происходит только на определенной длине волны, поскольку зависимости показателя преломления от длины волны у двух фаз тоже различаются. На одном краю спектра лутидиновая фаза преломляет свет чуть слабее, чем водно-кремнеземная, на другом — чуть сильнее, а посередине достигается равенство. При разных температурах точка пересечения оказывается на разных длинах волн.

Зависимость пропускаемых длин волны от температуры получилась очень сильной. При плюс 27,1 градуса материал пропускал синий свет, а при 27,7 градуса — уже зеленый. Ширина полосы пропускания в опытных образцах тоже была далека от идеала и составляла десятки нанометров. Но одно дело открытие, а другое дело — практическое применение: даже в таких простых случаях второе следует за первым далеко не сразу. Поиск оптимального материала и конструкции светофильтра, который меняет цвет от нагрева, еще впереди.

Нашли опечатку? Выделите фрагмент и нажмите Ctrl + Enter.
Подписывайтесь на нас в Telegram, Яндекс.Новостях и VK
Предстоящие мероприятия
Вчера, 14:02
Иван Лавренов

Некоторые пульсары покидают остатки сверхновых со скоростями более тысячи километров в секунду. Согласно новому исследованию, такую скорость им может придавать весьма необычное явление - мощное направленное нейтринное циклотронное излучение.

12 августа
Ольга Иванова

Исследование американских нейробиологов на грызунах показало, что повышенный уровень тестостерона способствует не только агрессивному, но и просоциальному поведению.

Позавчера, 14:54
Сергей Васильев

Крошечные маячки помогли ученым следовать за мигрирующими насекомыми в небольшом самолете, показав, что те уверенно ориентируются в пространстве, перелетая на тысячи километров.

Вчера, 14:02
Иван Лавренов

Некоторые пульсары покидают остатки сверхновых со скоростями более тысячи километров в секунду. Согласно новому исследованию, такую скорость им может придавать весьма необычное явление - мощное направленное нейтринное циклотронное излучение.

12 августа
Василий Парфенов

В конце июля многие СМИ опубликовали новости с заголовками вида «Земля стала вращаться быстрее — и ученые не знают почему». К концу первой недели августа тема добралась и до русскоязычного сегмента Сети. На поверку этот инфоповод пусть и без негативных последствий, но демонстрирует основные пороки современной (не только научно-популярной) журналистики. Рассказываем, как в действительности изменяется скорость вращения нашей планеты, насколько хорошо известны причины таких осцилляций, а также почему ученые никогда ничего не знают наверняка (и это нормально).

12 августа
Ольга Иванова

Исследование американских нейробиологов на грызунах показало, что повышенный уровень тестостерона способствует не только агрессивному, но и просоциальному поведению.

2 августа
Александр Березин

Если западным странам удастся «лишить Кремль нефтяных доходов», то мир ждет геополитическое землетрясение. Только не обязательно в ту сторону, о которой вы сейчас подумали. На фоне того, что последует за «лишением», шок 1973 года может показаться детской игрой. Naked Science попробует оценить размах «потолочного катаклизма» заранее.

31 июля
Александр Березин

Саудовский принц одобрил строительство гигантского «лежачего небоскреба», который должен стать крупнейшим зданием в истории. Причем еще и самым экологичным в мире. Пресса и соцсети полны возмущенных оценок: «это антиутопия!», «проект сырой!» и тому подобным. Однако чисто технически это не так: «Зеркальную линию» на пять миллионов жителей вполне можно построить. И такое здание в самом деле будет энергоэффективным (и формально безуглеродным). Но у проекта есть другие слабые места, лежащие скорее в сфере науки, нежели техники. Naked Science попробовал разобраться в деталях.

27 июля
Алиса Гаджиева

Новое исследование показало, что появившаяся у человека способность переваривать молочный сахар никак не сказалась на распространенности потребления продуктов молочного животноводства.

[miniorange_social_login]

Комментарии

Написать комментарий

Подтвердить?
Подтвердить?
Не получилось опубликовать!

Вы попытались написать запрещенную фразу или вас забанили за частые нарушения.

Понятно
Жалоба отправлена

Мы обязательно проверим комментарий и
при необходимости примем меры.

Спасибо
Аккаунт заблокирован!

Из-за нарушений правил сайта на ваш аккаунт были наложены ограничения. Если это ошибка, напишите нам.

Понятно
Что-то пошло не так!

Наши фильтры обнаружили в ваших действиях признаки накрутки. Отдохните немного и вернитесь к нам позже.

Понятно
Лучшие материалы
Войти
Регистрируясь, вы соглашаетесь с правилами использования сайта и даете согласие на обработку персональных данных.
Ваша заявка получена

Мы скоро изучим заявку и свяжемся с Вами по указанной почте в случае положительного исхода. Спасибо за интерес к проекту.

Понятно
Ваше сообщение получено

Мы скоро прочитаем его и свяжемся с Вами по указанной почте. Спасибо за интерес к проекту.

Понятно

Сообщить об опечатке

Текст, который будет отправлен нашим редакторам: