#наноматериалы

6 мая
Сколтех
149

Ученые из Лаборатории наноматериалов, Лаборатории иерархически структурированных материалов и Центра технологий материалов Сколтеха предложили новую двухэтапную технологию мониторинга многофункциональных полимерных нанокомпозитов.

29 апреля
ПНИПУ
98

По данным Минздрава России в мире каждый год проводится от 3,5 до четырех миллионов операций с использованием материалов для восстановления костей. Это второе по популярности направление после переливания крови, которое встречается в 10 раз чаще, чем пересадка других органов. В таких имплантатах используют особые наноматериалы, похожие на «губки» с мелкими дырочками. Благодаря порам они имеют огромную поверхность и уникальные свойства, которые делают их незаменимыми не только в медицине, но и экологии и химии — они отлично фильтруют воду, ускоряют химические реакции в промышленности и даже применяются для создания сверхлегких и прочных материалов. Существующая методика создания таких наноматериалов требует больших затрат, времени и электроэнергии. Ученые Пермского Политеха нашли более быстрый и дешевый способ изготовления этих структур, который не требует дополнительных реагентов и примесей.

3 февраля
ФизТех
242

Ученые разработали экологичный способ синтеза композитных наночастиц на основе золота (Au) и дисульфида молибдена (MoS2) методом фемтосекундной лазерной абляции в жидкости. Результаты исследования прокладывают путь для развития перспективных приложений наноматериалов в области тераностики.

03.10.2024
ФизТех
240

Коллектив российских ученых, куда вошли специалисты МФТИ, синтезировал ферромагнитные пленки переменного состава из палладия и железа с помощью метода молекулярно-лучевой эпитаксии. Им удалось обнаружить возможность управлять с помощью них спектром спиновых волн.

05.03.2024
КНЦ РАН
245

Материалы на основе титаносиликатов очень перспективны для современной химической промышленности из-за их исключительных функциональных свойств, включая сорбционные. Так, например, синтетический аналог минерала ситинакита с коммерческим названием зарубежных компаний IONSIV-911, способен надежно «запирать» в своей кристаллической структуре изотопы цезия, бария и стронция, что делает его одним из самых эффективных избирательных материалов для обезвреживания жидких радиоактивных отходов. Срок безопасного хранения отработанного синтетического материала может составлять более ста тысяч лет после его преобразования в минералоподобную керамику, в состав которой будет входить значительное количество извлекаемых радионуклидов.

28.06.2023
СПбГУ
437

Химики Санкт-Петербургского государственного университета применили методы работы с большими данными для предсказания фотокаталитических свойств нанолистов оксида цинка — наноструктурированного материала, состоящего из частиц в форме тонких листов. Исследование позволит решить вопрос безотходной утилизации красителей, которые широко используются как в лакокрасочной, так и в текстильной промышленности, а также ряд других задач.

27.01.2023
ТюмГУ
316

Тюменские и новосибирские физики показали, что потенциал использования полученных ими нанопорошков в нефтяной промышленности достаточно высок.

22.12.2022
НИТУ МИСИС
403

Российские ученые при участии исследователей НИТУ МИСИС предложили новый материал на основе нитрида бора и наночастиц оксида цинка с контролируемыми оптическими свойствами. Как отмечают авторы исследования, в будущем материал сможет найти применение как в оптоэлектронике, так и в медицине.

08.11.2022
СПбГУ
173

Ученые Санкт-Петербургского государственного университета установили закономерности изменения формы и размера наночастиц, используемых в тераностике (инновационной области медицины), за счет добавления в структуру различных лантаноидов. Применение частиц определенной формы и размера важно при проведении противораковой терапии или МРТ-диагностики, где необходимо применять наиболее мелкие частицы, так как они легче проникают в клетки и способны свободно перемещаться по сосудам и венам, не закупоривая мелкие капилляры.

28.09.2022
ТюмГУ
560

Из-за быстрого истощения водных ресурсов мир с нетерпением ожидает устойчивой альтернативы для очистки от вредных загрязнителей, таких как тяжелые металлы, а также органические и газообразные загрязнители. Ученые из России, куда вошли специалисты ТюмГУ, и Индии утверждают, что в качестве универсального решения для решения глобальной проблемы загрязнения окружающей среды можно использовать нанопористые углеродные материалы.

18.08.2022
Даниил Сухинов
1 261

Международная группа ученых из Китая и Великобритании разработала новый подход к извлечению золота из отработавшего свой срок электротехнического оборудования. Технология, основанная на применении оксида графена, позволяет извлекать следовые количества драгоценного металла (вплоть до миллиардных долей процента) с эффективностью до 99 процентов, избегая загрязнения примесными металлами. Более того, по мнению авторов, разработка в перспективе позволит добывать золото даже из морей и океанов.

12.07.2022
Сколтех
829

Исследователи из Сколтеха и их российские и испанские коллеги экспериментально подтвердили работоспособность концепции нанотомографии давления — нового метода отображения внутренней структуры наноматериалов с учетом распределения их плотности. Они показали, что разрешение нового вида томографии почти на два порядка выше, чем у используемых сегодня рентгеновской и нейтронной томографии, которые вдобавок несут радиационные риски. Авторы работы полагают, что их метод в перспективе может стать базовым метрологическим инструментом нанотехнологов.

29.06.2022
Иван Лавренов
1 359

Исследуя гель, который образуется из расслаивающихся растворов с добавлением наночастиц диоксида кремния и затвердевает при повышении температуры, ученые обнаружили необычное и ранее неизвестное оптическое явление.

23.05.2022
Университет Лобачевского
715

Ученые ННГУ имени Лобачевского с помощью суперкомпьютерных вычислений установили 543 устойчивых атомных кластера магния. Эти уникальные пространственные структуры могут стать основой новых наноматериалов для катализа, квантовых вычислений, микро- и наноэлектроники.

25.04.2022
ЮФУ
1 220

Совместное исследование, проведенное учеными Южного федерального университета и Института катализа имени Г. К. Борескова Сибирского отделения РАН позволило совместить оригинальный подход получения биметаллических наночастиц и использование модифицированного углеродного носителя для создания наноструктурных материалов с улучшенными характеристиками.

16.03.2022
Университет ИТМО
3 819

Ученые Университета ИТМО разработали алгоритм, который автоматически определяет размеры, форму, структуру поверхности наноматериалов и формирует их индивидуальных цифровых двойников. Разработка позволит строить более эффективные предсказательные модели в области материаловедения, а также осуществлять обратный дизайн структур от их свойств к способу получения. Это придаст импульс созданию новых материалов с заранее заданными текстурными свойствами для биомедицины, оптики и биотехнологии.

10.03.2022
ЮФУ
7 409

Правильное применение сегнетоэлектрических тонких пленок может быть эффективно на предприятиях и заводах, которые занимаются разработкой датчиков для автомобилей, приборов УЗИ и устройств военной техники. Технология ученых Южного федерального университета обладает лучшими характеристиками, чем у зарубежных коллег.

07.02.2022
ЮФУ
1 071

Благодаря исследованию сотрудников Международного исследовательского института интеллектуальных материалов Южного федерального университета автономные лаборатории смогут оперативно решать проблему ускорения разработки новых уникальных материалов.

09.12.2021
ЮФУ
1 048

Команда ученых Южного федерального университета разработала композитный материал на основе наночастиц, рассматриваемый для потенциальных применений в области лечения и диагностики злокачественный опухолей методом рентгеновской фотодинамической терапии (XPDT).

21.10.2021
Университет Лобачевского
1 823

Ученые Университета Лобачевского, Приволжского исследовательского медицинского университета и МГУ имени Н. П. Огарева развивают разработку нанокомпозитных материалов для заживления ран, язв и ожогов. Раневое покрытие представляет собой пленку из бактериальной наноцеллюлозы, которая содержит наночастицы оксида цинка, модифицированные дифосфатом бетулина.

Подтвердить?
Подтвердить?
Причина отклонения
Подтвердить?
Не получилось опубликовать!

Вы попытались написать запрещенную фразу или вас забанили за частые нарушения.

Понятно
Жалоба отправлена

Мы обязательно проверим комментарий и
при необходимости примем меры.

Спасибо
Аккаунт заблокирован!

Из-за нарушений правил сайта на ваш аккаунт были наложены ограничения. Если это ошибка, напишите нам.

Понятно
Что-то пошло не так!

Наши фильтры обнаружили в ваших действиях признаки накрутки. Отдохните немного и вернитесь к нам позже.

Понятно
Лучшие материалы
Закрыть
Войти
Регистрируясь, вы соглашаетесь с правилами использования сайта и даете согласие на обработку персональных данных.
Ваша заявка получена

Мы скоро изучим заявку и свяжемся с Вами по указанной почте в случае положительного исхода. Спасибо за интерес к проекту.

Понятно
Ваше сообщение получено

Мы скоро прочитаем его и свяжемся с Вами по указанной почте. Спасибо за интерес к проекту.

Понятно