• Добавить в закладки
  • Facebook
  • Twitter
  • Telegram
  • VK
  • Печать
  • Email
  • Скопировать ссылку
14.11.2016, 15:47
Редакция Naked Science
454

Искусственную нейросеть научили взвешивать виртуальные объекты

Американские ученые разработали систему искусственного интеллекта (ИИ), которая может определять количественные характеристики виртуальных объектов. Препринт исследования опубликован на сервере arXiv.org.

Последние достижения в области машинного обучения позволяют искусственным нейросетям соревноваться с человеком в разных приложениях, например в распознавании устной речи или лиц. Однако компьютеры остаются неспособны идентифицировать свойства объектов. В частности, для того, чтобы научиться перемещать манипулятор к дверной ручке, роботу, которым управляет нейросеть, необходимо около двух часов.

 

Ученые из Google DeepMind, Калифорнийского университета в Беркли и других учреждений разработали систему на базе рекуррентной LTSM-сети. Для ее обучения авторы использовали два различных виртуальных мира, в которых компьютер мог взаимодействовать с окружающими предметами. В первом мире находилось четыре одинаковых по размеру куба, масса которых была произвольной в каждой сессии эксперимента. Во втором мире находилось пять кубов, сложенных в башню.

 

Задачей компьютера в первом мире было найти наиболее тяжелый куб. Для этого он мог двигать объекты по вертикали (напрямую), прикладывая определенную силу. При успешном выполнении задания ИИ получал условное вознаграждение, в случае неудачи — штраф. Спустя около 100 тысяч повторений компьютер «понял», что для выявления самого тяжелого куба необходимо предварительно взвесить все кубы, после чего дать ответ.

 

Пример распределения массы. / © Misha Denil et al., 2016

 

Во втором мире алгоритм должен был выяснить количество находящихся перед ним объектов. Часть кубов в этом случае располагалась друг на друге, формируя единый блок. Компьютер также мог взаимодействовать с кубами, после чего получал положительную или отрицательную обратную связь. Со временем он разработал оптимальную стратегию выполнения задачи: сперва башня разрушалась, после чего оценивалось количество ее элементов.

 

По словам ученых, потенциально метод можно использовать для роботов, которым, например, будет необходимо перемещаться по пересеченной местности. Кроме того, система может быть актуальна для сервисных роботов, в задачи которых войдет целенаправленное взаимодействие с окружающими объектами, в частности роботов-космонавтов. Система обучения, которую применяли авторы, сейчас используется для обучения игрового искусственного интеллекта.

Нашли опечатку? Выделите фрагмент и нажмите Ctrl + Enter.
Подписывайтесь на нас в Telegram, Яндекс.Новостях и VK
Предстоящие мероприятия
11 февраля, 09:44
ПНИПУ

17 февраля 2026 года произойдет первое в этом году солнечное затмение, которое будет иметь кольцеобразный тип. Ученый Пермского Политеха Евгений Бурмистров рассказал, почему февральское затмение не похоже ни на одно другое, когда его ожидать и кому посчастливится стать свидетелем редчайшего «огненного кольца».

11 февраля, 11:47
Александр Березин

Целый ряд открытых ими галактик должен был возникнуть всего через 100 миллионов лет после Большого взрыва, что само по себе непросто согласовать с общепринятой физикой. Но одна из них по возрасту формально выглядит или ровесником Большого взрыва, или даже старше него. Если этот возраст подтвердится, Стандартная космологическая модель потеряет статус стандартной.

11 февраля, 11:01
СПбГУ

Геологи Санкт-Петербургского государственного университета в составе международного научного коллектива проанализировали данные пород из Восточной Антарктиды и выяснили, что магнитная аномалия в этом регионе стала следствием сближения континентов и рождения суперконтинента Родиния около одного миллиарда лет назад.

11 февраля, 09:44
ПНИПУ

17 февраля 2026 года произойдет первое в этом году солнечное затмение, которое будет иметь кольцеобразный тип. Ученый Пермского Политеха Евгений Бурмистров рассказал, почему февральское затмение не похоже ни на одно другое, когда его ожидать и кому посчастливится стать свидетелем редчайшего «огненного кольца».

6 февраля, 10:11
Александр Березин

В 1980-х годах большую популярность приобрела борьба с озоновыми дырами. Из-за нее хладагенты из хлорфторгулеродов заменили на аналоги из гидрофторуглеродов. Теперь ученые выяснили, что эта замена — как и следующие за ней, уже в рамках борьбы с глобальным потеплением — ведет к накоплению в атмосфере довольно опасных «вечных химикатов».

10 февраля, 11:01
СГМУ им. В.И. Разумовского

Латентный железодефицит и железодефицитная анемия остаются одними из самых распространенных патологических состояний. Пациенты нередко задаются вопросом: возможно ли скорректировать дефицит железа, лишь обогатив рацион железосодержащими продуктами, вроде красного мяса, свеклы, гранатов? Несмотря на логичность этого подхода, современные клинические рекомендации единодушно указывают на его несостоятельность в качестве основного лечения.

12 января, 15:39
Александр Березин

От рыб произошли все наземные позвоночные, включая нас, но как именно рыбы стали главным населением морей — до последнего времени оставалось неясным. Авторы новой научной работы попытались доказать, что причиной этого было вымирание, возможно, вызванное белыми ночами.

28 января, 10:50
Игорь Байдов

Международная команда палеонтологов описала новый вид динозавра размером с крупную современную птицу. Он носил на голове плотный костяной нарост, который эти животные, возможно, использовали для внутривидовых разборок. Находка показывает, что даже мелкие хищники мелового периода могли решать конфликты не только когтями и зубами, но и ударами головой.

26 января, 14:26
Александр Березин

Образцы грунта, взятые астронавтами полвека назад, вложили еще один важный кирпич в здание научной картины мира: гипотеза о том, что Земля исходно была сухой, не стыкуется с фактами. Похоже, идею о невозможности сохранения большого количества воды на «теплых» планетах придется пересмотреть.

[miniorange_social_login]

Комментарии

Написать комментарий
Подтвердить?
Подтвердить?
Причина отклонения
Подтвердить?
Не получилось опубликовать!

Вы попытались написать запрещенную фразу или вас забанили за частые нарушения.

Понятно
Жалоба отправлена

Мы обязательно проверим комментарий и
при необходимости примем меры.

Спасибо
Аккаунт заблокирован!

Из-за нарушений правил сайта на ваш аккаунт были наложены ограничения. Если это ошибка, напишите нам.

Понятно
Что-то пошло не так!

Наши фильтры обнаружили в ваших действиях признаки накрутки. Отдохните немного и вернитесь к нам позже.

Понятно
Лучшие материалы
Закрыть
Войти
Регистрируясь, вы соглашаетесь с правилами использования сайта и даете согласие на обработку персональных данных.
Ваша заявка получена

Мы скоро изучим заявку и свяжемся с Вами по указанной почте в случае положительного исхода. Спасибо за интерес к проекту.

Понятно