Уведомления
Авторизуйтесь или зарегистрируйтесь, чтобы оценивать материалы, создавать записи и писать комментарии.
Авторизуясь, вы соглашаетесь с правилами пользования сайтом и даете согласие на обработку персональных данных.
Инженеры Google описали ключевой изъян машинного обучения, приводящий к ошибкам ИИ
Тема искусственного интеллекта в последние годы стала невероятно популярной. Однако, несмотря на все достижения в этой области, ИИ по-прежнему чаще человека ошибается практически в любом классе задач. Специалисты Google сформулировали один из ключевых недостатков важнейшего компонента создания искусственного интеллекта — машинного обучения — и предложили способ его компенсации.

Научная работа опубликована на портале arXiv. В ней описано понятие недостаточной детализации (underspecification) в машинном обучении (machine learning). Авторы указывают на то, как в привычном процессе обучения нейросетевых алгоритмов слишком часто возникают неочевидные поначалу аномалии. В результате обученный таким образом алгоритм будет выдавать непредсказуемые или ошибочные выводы.
По мнению команды специалистов из Google, проблема в следующем. Во время обучения алгоритма на некоем наборе данных искусственный интеллект может сделать не совсем то обобщение, которое считают необходимым или эффективным его создатели. И сам по себе этот факт не является чем-то негативным, наоборот — в этом и есть «сила» нейросетей. Но, тренируя алгоритм, программисты не учитывают и далеко не всегда могут знать, что именно он выбрал в качестве дополнительных критериев. В итоге, классифицируя результаты как точные и неточные, человек обучает ИИ не совсем тому, чему хотел.
Результатом подобного обучения могут стать непредсказуемые ошибки. Например, в эпидемиологии есть математическая модель, описывающая течение эпидемии. Она строится на ключевых параметрах: коэффициенте распространения инфекции (R0) и продолжительности времени, пока заболевший заразен (D). Теоретически даже на ранних стадиях пандемии можно проанализировать эти данные по нескольким случаям и предсказать ее ход. Это крайне важно для властей и медиков, которые будут иметь понимание, когда переполнятся больницы и в какой момент и как нужно реагировать на статистику.
Однако на практике обученный по массивам медицинских данных искусственный интеллект может выдавать разные предсказания. И выбор из них реалистичного — нетривиальная задача. Дело в том, что во время обучения алгоритм будет учитывать множество побочных параметров. Так же делают и люди, но они могут объяснить свои решения, а ИИ — нет. Таким образом, необходимо еще на стадии создания алгоритма и его обучения учитывать все больше параметров. В этот момент появляется второе ключевое ограничение.
Подобных второстепенных параметров может быть огромное количество, и далеко не все из них будут так же важны для человека, как для нейросети. Фактически предсказать только по результату (прогнозу) модели, на основании каких второстепенных факторов была достигнута нужная точность, невозможно. И тем более нельзя сходу оценить, как именно изменится работа алгоритма при других масштабах поступающих данных. Свои соображения авторы описываемой работы наглядно и подробно иллюстрируют четырьмя примерами, в которых ИИ либо традиционно считается более точным, чем человек, либо его использование предполагается наиболее перспективным. Речь о компьютерном зрении, распознавании медицинских изображений и речи , а также медицинских предсказаниях на основе статистики.
Однако не все так ужасно. Авторы работы предлагают методику стрессового тестирования искусственного интеллекта. По их мнению, можно ввести в процесс машинного обучения обязательные стресс-тесты на специально подготовленных данных. Они могут быть нарочно выходящими за рамки моделей или хорошо изученными экстремальными примерами из реальной жизни. В любом случае с их помощью будут сразу обнаружены основные аномалии алгоритма.
Несомненно, озвученные сотрудниками Google идеи не являются революционными и зачастую используются на практике. Но они еще не стали стандартом даже в самых критичных для нас областях применения ИИ. И, конечно, для многих профессионалов вышеописанная работа может выглядеть простой и очевидной. Тем не менее в ней от элементарных моделей до сложнейших симуляций показано влияние недостаточной детализации на результат. Кроме того, авторы работы собрали воедино идеи и выводы из колоссального количества публикаций на смежные темы. Это позволяет назвать ее отличным промежуточным итогом в развитии современных наработок в области ИИ.
В марсианских Долинах Маринера последние полтора десятка лет наблюдают вещество, которое лишь недавно удалось идентифицировать. Как выяснилось, это минерал, для возникновения которого нужны в том числе вода, кислород и температура от плюс 100 градусов Цельсия.
Ученые ТПУ совместно с коллегами провели эксперименты и с высокой точностью предсказали кинетические характеристики воспламенения и сгорания топлива с добавлением воды. Результаты показали, что топливо с небольшой добавкой воды сгорает на 7-14% быстрее по сравнению с однородным углеводородным топливом. В будущем это может помочь в разработке более экологичных и ресурсоэффективных систем сжигания альтернативных топлив.
В начале 2023 года у самки золотистого ретривера по кличке Лола диагностировали меланому в полости рта — редкую и агрессивную форму рака, которая уже распространилась на легкие. По прогнозам ветеринаров, собаке оставалось жить несколько месяцев. Однако хозяева Лолы не сдались и продолжили бороться за жизнь любимицы вместе с врачами онкоцентра ветеринарной клиники при Калифорнийском университете в Дейвисе (США). Благодаря их экспериментальному лечению все следы рака примерно через полгода исчезли. Собака продолжает жить и в октябре 2025-го отметит свое 11-летие.
Компания впервые смогла устранить недоработки Starship V2 в достаточной степени, чтобы выполнить всю намеченную программу испытаний в одном полете. Впрочем, без сбоев не обошлось и на этот раз. Традиционные американские космические игроки продолжают считать, что задержки с программой позволят Китаю выиграть вторую лунную гонку у США.
Согласно выводам авторов нового исследования, сумчатый волк, или тилацин, проиграл эволюционную битву за выживание за миллионы лет до того, как первый человек ступил на австралийскую землю. Оказалось, этот вид хищных сумчатых постепенно терял ключевые гены, что сделало его уязвимым перед лицом природных изменений. Человек и динго лишь довершили процесс.
До сих пор совместные наблюдения гравитационно-волновых обсерваторий LIGO, Virgo и KAGRA показывали только 90 кандидатов в слияния, порождающие гравиволны. Новый каталог более чем удвоил число этих объектов и породил серьезные астрофизические вопросы.
Примерно 12 800 лет назад в Северном полушарии началось резкое изменение климата, которое сопровождалось вымиранием мегафауны и угасанием культуры Кловис. Такое могло произойти, например, из-за прорыва пресных вод в Атлантику или мощного вулканического извержения. Несколько лет назад ученые обнаружили места на суше с повышенным содержанием элементов платиновой группы, прослоями угля, микрочастицами расплава. По их мнению, это может быть признаком пребывания Земли в потоке обломков кометы или астероида. В новой работе впервые представлены доказательства кометного события в позднем дриасе из морских осадочных толщ.
Влияет ли формат знакомства на качество последующих романтических отношений в паре? Научные данные на этот счет разнятся. Новое исследование по вопросу представила группа психологов из Польши, Австралии и Великобритании. В попытке понять, при каком сценарии удовлетворенность отношениями выше, а любовь крепче — когда двое нашли друг друга в Сети или познакомились в жизни, — ученые опросили свыше 6000 тысяч человек из разных стран.
Тщательный анализ спутниковых снимков позволил ученым оценить изменение скорости фотосинтеза на планете с 2003 по 2021 годы. Ситуация оказалась несколько неожиданной: если на суше растения явно «ускорились», то в океане ситуация намного менее определенная.
Природа она дура по большому счетуА природа по-Вашему, это что? Создатель, классная дама или процесс?
Эмоциональное окрашивание явлений весьма характерно для стадных животных.Т.е. нестадные животные, по-Вашему", не обладают понятиями "вкусно - не вкусно", "мягко - жёстко", "комфортно - не комфортно"?
Природа она дура по большому счетуА природа по-Вашему, это что? Создатель, классная дама или процесс?
Эмоциональное окрашивание явлений весьма характерно для стадных животных.Т.е. нестадные животные, по-Вашему", не обладают понятиями "вкусно - не вкусно", "мягко - жёстко", "комфортно - не комфортно"?

Вы попытались написать запрещенную фразу или вас забанили за частые нарушения.
Понятно
Из-за нарушений правил сайта на ваш аккаунт были наложены ограничения. Если это ошибка, напишите нам.
Понятно
Наши фильтры обнаружили в ваших действиях признаки накрутки. Отдохните немного и вернитесь к нам позже.
Понятно
Мы скоро изучим заявку и свяжемся с Вами по указанной почте в случае положительного исхода. Спасибо за интерес к проекту.
Понятно
Комментарии