Уведомления
Авторизуйтесь или зарегистрируйтесь, чтобы оценивать материалы, создавать записи и писать комментарии.
Авторизуясь, вы соглашаетесь с правилами пользования сайтом и даете согласие на обработку персональных данных.
Физики решили «проблему Фейнмана» об инвертированном разбрызгивателе. Ответ очевидный, а вот объяснение — нет
В какую сторону будет вращаться обычный садовый опрыскиватель, если поток жидкости в нем обернуть вспять? Ответ на этот вопрос выглядит абсолютно очевидным. И он всегда разный в зависимости от степени понимания отвечающим физики протекающих процессов. Поэтому неудивительно, что загадка об инвертированном разбрызгивателе занимала лучшие умы человечества многие десятилетия. К счастью, американские ученые наконец-то теоретически и экспериментально обосновали по-настоящему правильное ее решение.
Для начала стоит упомянуть, что проблема инвертированного разбрызгивателя — наглядная иллюстрация закона Стиглера: Ричард Фейнман лишь популяризовал загадку, но сформулировал ее далеко не первым. Наиболее раннее упоминание этого теоретического вопроса встречается в труде The Science of Mechanics (1883 год) небезызвестного Эрнста Маха, именем которого названо число Маха. Экспериментальные попытки определить, в какую сторону будет вращаться инвертированный разбрызгиватель, стали предпринимать примерно с 1940-х годов.
Имя Фейнмана с этой задачей связано следующим образом. Во-первых, когда он услышал обсуждение проблемы инвертированного разбрызгивателя (как раз в 1940-е) коллегами-аспирантами, предложил провести эксперимент. И не где-нибудь, а в помещении циклотрона Принстонского университета. Опыт закончился феерично: задействованный в процессе стеклянный бак разорвало от избыточного давления. Результат оказался спорным, разбрызгиватель сначала немного дернулся вокруг своей оси, а затем замер и больше не двигался. Хотя вода через него продолжила проходить.
Во-вторых, именно Фейнман познакомил широкую публику с проблемой инвертированного разбрызгивателя. Она упоминается в его автобиографической книге «Вы, конечно, шутите, мистер Фейнман» (1985 год). Хотя в среде популяризаторов науки и ученых эта задача и ранее ассоциировалась с его фамилией, чем гениальный физик явно не был доволен. Он справедливо указывал, что лавры первооткрывателя принадлежат не ему, а Маху.
Упрощенно суть проблемы заключается в следующем. Полностью погрузим садовый S-образный вращающийся разбрызгиватель в большую емкость и попробуем откачать через него воду. В какую сторону будет вращаться разбрызгиватель и будет ли он это делать вообще? Возможных решений три:
- Он будет вращаться в сторону, противоположную «обычному» режиму разбрызгивания: вода же всасывается, следовательно, на срезе сопел возникает разрежение. Это объяснение наименее полное с точки зрения физики, но интуитивно кажется самым логичным.
- Он будет вращаться в ту же сторону, что и «обычный» разбрызгиватель: увлекаемая в него вода передает часть крутящего момента на изгибающееся сопло. Этот вариант требует как можно меньшего трения во всех вращающихся деталях разбрызгивателя.
- Он останется на месте: сила реакции сопла, всасывающего воду, уравновешивается моментом, который вода передает изгибу внутри сопла. С точки зрения большинства изучавших проблему ученых, это наиболее правильный вариант.

На протяжении последнего полувека различные исследователи проводили эксперименты, чтобы определить, какой из этих вариантов соответствует действительности. Но результаты были всегда неоднозначные. Даже в тех случаях, когда трение движущихся частей разбрызгивателя удавалось снизить практически полностью, он либо стоял на месте, либо едва заметно вращался в противоположную сторону. Полноценного ответа найти не получалось.
За решение эпохальной задачи взялась лаборатория прикладной математики Курантовского института математических наук (NYU Courant: Institute) — независимого подразделения Нью-Йоркского университета. В ней уже не раз отвечали на животрепещущие вопросы «жизни, Вселенной и вообще»: в 2018 году нашли рецепт идеальных мыльных пузырей, в 2021-м объяснили формирование загадочных каменных лесов, а в 2022-м изучили нюансы аэродинамики планеров с тончайшими крыльями (что позволяет делать самые эффективные бумажные самолетики). Новая научная работа плодотворной исследовательской организации опубликована в рецензируемом журнале Physical Review Letters.
Чтобы во всех деталях изучить происходящее с инвертированным разбрызгивателем, ученым пришлось попотеть. Сначала они создали наиболее полную модель устройства, провели все необходимые вычисления и рассчитали разные варианты развития событий в эксперименте. Для опыта исследователи собрали такую установку, в которой не только минимизировано трение, но и устранены возможные возмущения от потоков жидкости вокруг самого разбрызгивателя.
Во время эксперимента использовали не обычную воду — в нее добавили отражающие микрочастицы, которые ярко светились в лучах подсвечивающего лазера. Так получилось наглядно увидеть поток жидкости и все возникающие в нем турбулентности. Результатом экспериментов и моделирования стала удивительная картина: инвертированный разбрызгиватель действительно будет крутиться в сторону, противоположную «обычному» режиму работы. Только в 50 раз медленнее. Самое удивительное, что обнаружили исследователи: механизм этого вращения полностью идентичен таковому у «правильного», не инвертированного разбрызгивателя. И его секрет кроется в том, что происходит внутри устройства.

Дело в том, что при всасывании воды, трубки-сопла тоже формируют струи, только не снаружи разбрызгивателя, а внутри. Даже если они расположены строго на противоположных сторонах кольца и оси их параллельны, получившиеся струи не обязательно столкнутся в центре. Ведь сопла изгибаются, меняют направление движения воды, а она, в свою очередь, получает от этого дополнительный импульс. И когда покидает трубку, часть этого импульса заставляет поток отклоняться от прямолинейной траектории.
В результате внутри разбрызгивателя возникает несколько вихрей, вращающихся в противоположные стороны. Но их размер, а вместе с тем скорость и объем вовлеченной воды, не одинаковый. Это приводит к неравномерному распределению момента силы в разных направлениях. И устройство вращается.
Вывод исследования можно кратко сформулировать так: будет ли фейнмановский разбрызгиватель вращаться и если да, то в какую сторону, — в первую очередь зависит от внутренней геометрии этого разбрызгивателя. В общем случае он будет едва заметно вращаться в обратную сторону, но если трение в его деталях велико, то это движение зафиксировать трудно.
Ученые открыли новый, ранее неизвестный способ передвижения бактерий по поверхностям, для которого не нужны жгутики. Эти микроорганизмы на краю колонии переваривают сахара, выделяют метаболиты и создают осмотическое давление. Оно вызывает микроскопическое «цунами», и на нем бактерии катятся вперед.
Ученые из МФТИ и Национального исследовательского центра «Курчатовский институт» создали первую в своем роде полную классификацию конических сингулярностей в геометрии Минковского. Это фундаментальное достижение в математической физике заполняет пробел, существовавший в общей теории относительности более 60 лет.
Стали известны имена лауреатов Yandex ML Prize. Эту научно-образовательную премию основали в 2019 году для развития академического сообщества, а также поддержания мотивации исследователей и преподавателей к сфере искусственного интеллекта.
По расчетам, большинство «гостей» из других звездных систем летят к Земле примерно со стороны созвездия Геркулес. Скорее всего, они время от времени падают на нашу планету, просто мы еще не научились это замечать. Как удалось вычислить, чаще всего они должны падать зимой и где-то в окрестностях экватора.
Ученые открыли новый, ранее неизвестный способ передвижения бактерий по поверхностям, для которого не нужны жгутики. Эти микроорганизмы на краю колонии переваривают сахара, выделяют метаболиты и создают осмотическое давление. Оно вызывает микроскопическое «цунами», и на нем бактерии катятся вперед.
Недавно интернет взорвался заголовками: «Симуляция Вселенной невозможна», «Новое исследование полностью опровергает теорию симуляции». Поводом стала статья, авторы которой вознамерились доказать, что мы не живем внутри компьютера. Naked Science объясняет, что не так с этой новостью и можно ли на самом деле доказать, что «матрицы не существует».
Проанализировав данные наблюдений, полученных с помощью наземных обсерваторий за последние два десятилетия, астрономы обнаружили потенциально обитаемый мир — суперземлю Gliese 251 c (GJ 251 с). Планета обращается вокруг красного карлика на расстоянии около 18 световых лет от Земли и считается одним из самых перспективных кандидатов для поисков жизни.
По расчетам, большинство «гостей» из других звездных систем летят к Земле примерно со стороны созвездия Геркулес. Скорее всего, они время от времени падают на нашу планету, просто мы еще не научились это замечать. Как удалось вычислить, чаще всего они должны падать зимой и где-то в окрестностях экватора.
В современном доме, насыщенном разнообразной техникой, удлинители стали незаменимым атрибутом, позволяющим обеспечить электропитанием все необходимые устройства. Однако мало кто задумывается, что привычное использование этого аксессуара может нести серьезную угрозу безопасности. По статистике, значительная часть бытовых пожаров происходит из-за неправильной эксплуатации электропроводки и вспомогательных устройств. Какие приборы категорически нельзя подключать через удлинители и почему это может привести к трагическим последствиям, рассказывает профессор кафедры наноэлектроники РТУ МИРЭА, доктор физико-математических наук Алексей Юрасов.
Вы попытались написать запрещенную фразу или вас забанили за частые нарушения.
Понятно
Из-за нарушений правил сайта на ваш аккаунт были наложены ограничения. Если это ошибка, напишите нам.
Понятно
Наши фильтры обнаружили в ваших действиях признаки накрутки. Отдохните немного и вернитесь к нам позже.
Понятно
Мы скоро изучим заявку и свяжемся с Вами по указанной почте в случае положительного исхода. Спасибо за интерес к проекту.
Понятно

Последние комментарии