Уведомления
Авторизуйтесь или зарегистрируйтесь, чтобы оценивать материалы, создавать записи и писать комментарии.
Авторизуясь, вы соглашаетесь с правилами пользования сайтом и даете согласие на обработку персональных данных.
#материалы
Технологии нанесения защитных покрытий переживают революцию, и ее драйвером становится плазма. Сегодня этот метод уже позволяет создавать такие структуры, которые невозможны при традиционном окрашивании или термообработке. Одним из перспективных направлений в этой области выступают плазменные покрытия из полимерных смесей на основе порошковой эпоксидной смолы, исследованные инженерами UST Inc.
Ученые МИЭМ ВШЭ совместно с коллегами из Китая нашли способ повысить долговечность перовскитных солнечных батарей. Они решили проблему с утечкой йода из материала. Для этого в перовскит добавили молекулы четвертичного аммония, которые образуют прочную электростатическую пару с ионами йода и фиксируют их в кристалле. Теперь элементы сохраняют более 92% мощности после тысячи часов работы при 85 °C.
Новые материалы позволяют построить атомные реакторы и для полетов в космос, и для получения зеленой и более дешевой электроэнергии на Земле. Технологии, лежащие в основе их создания, помогают даже выращивать биологические ткани для замены поврежденных. Мы поговорили обо всем этом с научным руководителем направления «Материалы и технологии» Госкорпорации «Росатом», первым заместителем директора частного учреждения «Наука и инновации» Алексеем Дубом.
Ученый из лаборатории компьютерного дизайна материалов Центра фотоники и двумерных материалов МФТИ Андрей Катанин усовершенствовал классическую теорию вычисления обменных взаимодействий в магнитных материалах. Его подход открывает новые возможности для предсказания магнитных свойств материалов, что важно для развития спинтроники и квантовых технологий.
Общество по-разному использует волокна. Они необходимы для создания одежды и промышленного производства. Синтетические волокна, созданные на основе нефти, вредны для экологии. Они вносят значительный вклад в загрязнение микропластиком. Японские исследователи разработали природный материал, который не только экологичен, но и прочен. Создают эти волокна мешочные черви.
Полимерные покрытия многие годы служат основой защиты различных металлоконструкций. Они применяются как в бытовой технике, так и на сложных инженерных объектах, в том числе и в транспортных системах. Однако в транспортной отрасли, особенно там, где создаются крупногабаритные и аэродинамически сложные машины, традиционные технологии порошкового окрашивания оказываются недостаточно эффективными. Подвижной состав для комплексов uST имеет уникальный дизайн с большой площадью остекления и требует идеального качества покрытия. Из-за этого белорусские инженеры столкнулись с задачей, которую оказалось невозможно решить стандартными методами.
Исследователи Университета МИСИС предложили новый подход к переработке мелкодисперсных отходов коксохимического производства в высокопрочные брикеты с улучшенными свойствами. В перспективе метод позволит возвращать вторсырье в производственный цикл и создавать из него твердое топливо для доменного и ферросплавного производств.
Современная промышленность остро нуждается в таких материалах, как терморасширенный графит, сочетающий сверхлегкость, жаропрочность и способность поглощать различные загрязнения — от тяжелых металлов до токсичных паров. Однако традиционные промышленные методы очистки повреждают слоистую структуру, лишая ее уникальных свойств. Решение нашли ученые Пермского Политеха: очистка солями аммония не только обеспечивает чистоту 99,98%, но и не нарушает целостность вещества. Этот подход открывает путь к массовому производству перспективных материалов. Уже сегодня терморасширенный графит незаменим для создания термостойких уплотнений в авиадвигателях, эффективных сорбентов и специальных покрытий, а в перспективе его свойства позволят совершить рывок в развитии гибкой электроники, передовых систем хранения энергии и фильтрации нового поколения.
От стабилизации сердечного ритма до точности космических аппаратов — везде требуется кварц. Этот хрупкий минерал незаменим при производстве процессоров смартфонов, оптических элементов лазерных систем, деталей космической техники, медицинских кардиостимуляторов и ультразвуковых датчиков. Он используется в волоконно-оптических линиях связи, высокоточных научных приборах и защитных стеклах космических аппаратов. Мировой рынок этого универсального минерала уверенно растет: при текущей оценке в 7,31 миллиарда долларов и рыночной стоимости в 1,2 миллиарда долларов в 2024 году, к 2029 году его объем достигнет 8,98 миллиарда долларов. Однако его обработка остается сложным вызовом для высокотехнологичных отраслей: малейшая ошибка при сверлении ведет к сколам, трещинам и браку дорогостоящих компонентов. Ученые ПНИПУ разработали одно из первых в мире готовых решений для сверления хрупкого кварца. Результаты уже сейчас позволяют производителям сократить время обработки на 40%, снизить процент брака и заменить дорогие импортные аналоги эффективной отечественной разработкой.
Международная группа ученых под руководством физиков из Центра фотоники и двумерных материалов Московского физико-технического института (МФТИ) экспериментально доказала, что электроны в графене могут вести себя как особая «томографическая жидкость». В такой жидкости коллективные возмущения (сложно устроенные волны) разного типа затухают с кардинально разной скоростью, что открывает новые перспективы для электроники.
24 октября — День нейлоновых чулок. Эта дата символизирует настоящую революцию в мире моды и технологий: в 1939 году в США состоялся первый массовый выпуск этой продукции. Благодаря прочности и стойкости нейлона к истиранию, его применяют в самых неожиданных сферах жизни. Ученый Пермского Политеха рассказал, где его используют сегодня, и какие мифы существуют об этом материале.
Работая со сплавами Гейслера, которые обеспечивают высокоэффективное и экологически безопасное охлаждение в конструкции холодильников и тепловых насосов, физики Томского государственного университета усовершенствовали структуру поликристаллов сплава NiFeGa(Co). К нему был добавлен бор, и новый материал NiFeGaCoB показал значительный охлаждающий эффект в широком интервале температур – до 125°С. Кроме того, специальная термомеханическая обработка полученного сплава сделала его прочным и пластичным, что несвойственно поликристаллам в обычном состоянии. Такие результаты дают возможность повысить качество и при этом удешевить производство деталей для тепловых насосов, холодильников и охлаждающих устройств с микроэлектронной «начинкой», к примеру, компьютеров и мобильных телефонов.
Специалисты UST Inc. разработали технологию получения кожи из грибов, продолжая следовать философии компании, основанной на создании экологичного транспорта и бережном отношении к природе. Организация стремится использовать исключительно безопасные для окружающей среды материалы, такие как кожа на грибной основе, которую можно производить и на Земле, и даже в космосе.
Команда исследователей с участием сотрудников МИЭМ ВШЭ показала, что дефекты в материале могут не снижать, а, наоборот, усиливать сверхпроводимость. Это возможно благодаря взаимодействию дефектных и более чистых областей, которое образует «квантовый клей» — однородную компоненту, связывающую разрозненные сверхпроводящие участки в единую сеть. Расчеты подтвердили, что такой механизм может помочь в создании сверхпроводников, работающих при более высоких температурах.
Китайские специалисты по нанотехнологиям создали умную куртку с терморегулирующими свойствами. Чем больше человек потеет, тем тоньше она становится, адаптируясь под изменения микросреды тела. Такая одежда в перспективе может обеспечить комфорт на холоде для велосипедистов, курьеров, санитаров или сотрудников дорожной полиции, проводящих много времени на открытом воздухе.
Вы попытались написать запрещенную фразу или вас забанили за частые нарушения.
Понятно
Из-за нарушений правил сайта на ваш аккаунт были наложены ограничения. Если это ошибка, напишите нам.
Понятно
Наши фильтры обнаружили в ваших действиях признаки накрутки. Отдохните немного и вернитесь к нам позже.
Понятно
Мы скоро изучим заявку и свяжемся с Вами по указанной почте в случае положительного исхода. Спасибо за интерес к проекту.
Понятно
Последние комментарии