• Добавить в закладки
  • Facebook
  • Twitter
  • Telegram
  • VK
  • Печать
  • Email
  • Скопировать ссылку
02.11.2020
Александр Березин
44
19 041

Вдруг с неба упадет самолет: АЭС и устойчивость к внешним угрозам

5.8

Один из наиболее частых вопросов по безопасности атомных реакторов — что будет, если случится землетрясение, цунами или, например, упадет самолет? Как ни странно, почти ко всем этим маловероятным случаям проектировщики атомных электростанций готовились. И даже в случае таких внешних воздействий, к которым проектировщики не готовили свои реакторы, они оказались вполне безопасными для окружающих. Попробуем подробнее разобраться в том, как АЭС удается добиться таких результатов.

АЭС
Как ни парадоксально, но персонал АЭС — пожалуй, самая защищенная часть населения в случае террористической атаки, падения самолета или стихийного бедствия. За пределами станции риски погибнуть при любом из таких происшествий будут намного выше / © Wikimedia Commons / Автор: Владимир Богданов

Представления людей о той или иной опасности часто не соответствуют реальности. АЭС — один из типичных примеров такого рода. Зачастую мы слышим: на реактор может упасть самолет (или его могут направить туда террористы). Он способен выйти из строя из-за землетрясения или цунами. В атомной войне они станут целями для боеголовок противника — и тем самым серьезно усложнят выживание любой стране, у которой они есть. Более того, многие думают, что если реактор подвергнется настолько серьезному воздействию, то сам может взорваться как атомная бомба.

Живучесть и древность этих представлений необычайна: даже в первом фильме бондианы, вышедшем в 1962 году, британский правительственный агент занимается именно диверсией на АЭС бассейнового типа (аналогичные ей реально существовали в ту эпоху). Он умудряется разогнать реактор так, что на острове загадочного доктор Ноу из СПЕКТРа происходит взрыв — и всей его преступной инфраструктуре наступает конец.

Как бы ни было смешно, но в основе этой нереальной истории лежат те же идеи, что и в основе описанных выше кошмаров наших современников: непонимание того, как работают реакторы на самом деле.

Начнем с простейшего: нет, реактор не может взорваться как атомная бомба. Для этого нужно 47 килограммов оружейного (практически чистого) урана-235, сложенные компактной «горкой», а затем еще резко «обжатых» взрывом. В современных реакторах не используется топливо и с 50% обогащения, даже 20% — редкость. Большинство использует топливо, в котором урана-235 вместе с плутонием не более 5%. Что ни делай с таким топливом, ядерный взрыв из этого не получится. Бонд не смог бы устроить ядерный взрыв на острове доктора Ноу. Вернемся к более реалистичным сценариям.

Падение самолета

Этой теме с самого 2001 года отдается немало внимания прессы. Типичные суждения тут подобные вот этим с bellona.ru: «Ни у действующих, ни у строящихся АЭС нет серьезной защиты от этого».

На самом деле, все не так: например, для реакторов ВВЭР-ТОИ предусматривается защита от падения 20-тонного истребителя, а как запроектное воздействие рассматривается падение 400-тонного самолета типа «Боинга-747». Но даже до появления подобных усиленных видов защиты реальной опасности от падения авиалайнера для АЭС не было.

Элементы защитного контейнмента ядерного реактора на этапе строительства. Хорошо виден циклопический характер этого сооружения / © Wikimedia Commons

Как ни странно, современному реактору просто не нужна какая-либо особая защита от случайного падения самолета — даже от преднамеренной атаки пассажирским авиалайнером, как 11 сентября 2001 года. Причина проста: энергоблок защищает контейнмент — наружная оболочка со стенами из железобетона толщиной до полутора метров.

Напомним: самолеты — это конструкции из дюралюминиевых сплавов с типичной толщиной внешней оболочки 1,5 миллиметра или в тысячу раз меньше. Внутри они практически пустые. Действительно плотные части самолета — его моторы, но у авиалайнеров они разнесены далеко в сторону, отчего не смогут обеспечить удар «плотно сжатым кулаком», только растопыренными пальцами.

Шансы такой конструкции пробить метровый железобетон — такие же, как у куриного яйца пробить стену толщиной в полкирпича. Даже если яйцо ударит в стену на скорости 500 километров в час — а больше авиалайнеру не набрать даже в пикировании, — кирпичная стена от этого не развалится.

Однако не так много людей знают, какой толщины обшивка авиалайнера или защитная оболочка реактора. Многие исходят из примера башен-близнецов — огромных небоскребов, погибших от атак самолетов под управлением террористов. Там, правда, обрушение случилось вовсе не от удара самолета о здание, а от того, что из разрушившихся при столкновении авиалайнеров вытекало топливо. Оно горело, стальные конструкции, на которых держатся небоскребы, нагрелись до сотен градусов, потеряли прочность и в итоге сложились. В АЭС этот сценарий нереален: они не небоскребы, их оболочка куда толще, поэтому прочность контейнмента нельзя нарушить нагревом от топлива авиалайнера.

Типичный водо-водяной реактор. Светло-желтым показана оболочка контейнмента толщиной в 1-1,5 метра / ©Wikimedia Commons

Но публика редко об этом задумывается, поэтому в 2002 году в США в связи со страхами общественности было проведено исследование: что будет, если «Боинг-767» врежется в здание с атомным реактором внутри. Оказалось, ситуация для реактора облегчается еще и тем, что ударить в него на полной скорости авиалайнер не может.

Дело в том, что при попытке спикировать под большим углом на таком самолете любой пилот либо потеряет контроль над машиной (чья система управления исходно не была предназначена для таких резких маневров), либо вообще разрушит самолет в воздухе. Атака возможна только при пологом пикировании (то есть в самую толстую, горизонтальную часть контейнмента) и на умеренной для авиалайнера скорости. Иначе (на большой скорости) точно управляемый полет в приземном слое реализовать сложно, а без хорошей управляемости «воткнуть» самолет в не самый большой объект будет сложно.

Топливо в таком сценарии, кстати, вовсе не может стечь сверху на здание: оно будет находиться у подножия, где и выгорит, не подвергнув серьезной опасности ни контейнмент, ни тем более находящийся внутри реактор.

К сожалению, полнозаразмерный тест такого рода никто не проводил (только моделирование). Однако фрагмент стены, типичной для контейнмента, испытывали ударом старого истребителя «Фантом», разогнанного до 770 километров в час: Истребитель этот меньше лайнеров, но зато его моторы (самая плотная часть авиационной конструкции) расположены очень близко друг к другу. Поэтому эффект от удара этого истребителя о железобетон, как ни странно, вполне сопоставим с ударом в ту же стену крупного лайнера.

После теста максимальная глубина следа на железобетоне составила 60 миллиметров. Неудивительно, что и французское исследование 2012 года посчитало сомнительным разрушение контейнмента от падения на него самолета.

Хорошо, мы убедились, что сам контейнмент самолету пробить не удастся. Но через него идут трубы с водой — они при ударе могут дать течь, верно? Чисто теоретически это возможно: если лайнер случайно ударит как раз над участком, где проходят трубы. Но что это даст? Вода из второго контура нерадиоактивна, да и из первого, если честно, умеренно опасна, поскольку при ее обстреле нейтронами просто не создается значительное количество долгоживущих радионуклидов (благо в воде из атомов только водород и кислород).

А как же «радиоактивная вода Фукусимы», спросит читатель? Увы, никак: вечно возобновляющиеся публикации в СМИ про эту воду — исключительно результат радиофобии. Да, активная зона реактора на Фукусиме частично расплавилась, а использовавшуюся для ее охлаждения морскую воду действительно рано или поздно начнут сбрасывать в океан. Вот только это добавит в местный радиационный фон, получаемый жителями… 1,2 микрозиверта, то есть меньше, чем если они раз в год сходят на рентген. Более того: и с этой добавкой фон у Фукусимы будет много меньше, чем естественный и вполне безопасный для здоровья радиационный фон в целом ряде других регионов планеты.

Предпоследний вопрос: а что если самолет упадет на контейнеры, где хранится отработавшее ядерное топливо (как мы уже объясняли, его неверно называть «ядерными отходами»)? Как ни странно, снова ничего. Эти контейнеры проверяли на прочность, пуская в них разогнанные до больших скоростей поезда, и не смогли нанести им заметных повреждений. Самолет сделан из намного более тонкого металла заметно меньшей плотности. Кроме того, он легкий (относительно железнодорожных объектов). Из-за всего этого авиалайнер не сможет всерьез повредить топливо в таком контейнере.

И, наконец, последний вопрос: что, если удар придется по залу управления и уничтожит его полностью, со всеми операторами? В случае нынешних реакторов — практически ничего. Дело в том, что сейчас стержни над активной зоной удерживают электромагниты. Утрата энергоснабжения (вероятная при разрушении зала управления) или любые опасные необычности в поведении реактора приведут к тому, что питание, подаваемое на эти электромагниты, будет отключено, и стержни сами, под действием одной силы тяжести, упадут внутрь активной зоны, останавливая там цепную реакцию.

Из всего этого становится понятно, почему террористические атаки на АЭС сегодня редко попадают в СМИ: их не так много (слишком защищенный объект).

Землетрясение: что случится с реактором после него

Устойчивость того иного объекта к землетрясениям напрямую зависит от того, насколько он подготовлен к различным видам нагрузок. Бетон слабо переносит нагрузку на растяжение, поэтому его давно армируют стальной арматурой. В случае АЭС эта арматура предварительно напряженная — то есть бетон заливают на заранее натянутые армирующие тросы. В результате прочность здания даже очень старых реакторных сооружений огромна. Кроме того, специальные гидроамортизаторы связывают плиту основания и оборудование станции в одно целое, не позволяя ему смещаться даже при очень сильных толчках.

Последствия Спитакского землетрясения в Армении, унесшего жизни десятков тысяч человек / ©Wikimedia Commons

Впервые такую сейсмоустойчивость в СССР продемонстрировала Армянская АЭС с двумя реакторами ВВЭР-440, построенными в 1970-х. 7 декабря 1988 года близ нее случилось Спитакское землетрясение. В эпицентре оно дало семь баллов по шкале Рихтера, а у самой АЭС — 5,5 балла. Всего в Армении тогда погибло 25 тысяч человек, а на территории атомной станции — ни одного.

Но если реакторы оказались прочны, то про советский образовательный фундамент это сказать уже сложнее. Дело в том, что на тот момент в СССР антиатомные настроения были на пике и пресса регулярно и успешно запугивала общество, рассказывая об опасностях атомной энергетики — правда, что характерно, все больше без цифр, но качественно напирая на эмоции. От этого значительная часть неквалифицированного персонала Армянской АЭС просто бежала со своих рабочих мест, что потребовало переброски персонала аж с Кольского полуострова.

Армянская АЭС никак не пострадала от землетрясения, наглядно продемонстрировав, что ее прочность несопоставимо выше, чем у других объектов инфраструктуры или жилых домов. Ни один человек здесь не погиб / ©Wikimedia Commons

Политики позднего СССР, как несложно догадаться, были такой же добычей СМИ, как и все остальные. Поэтому они, недолго думая, приняли решение об остановке абсолютно нормально работавшей тогда станции, по сути «не заметившей» самого землетрясения. Обоснование? «Учитывая общую сейсмическую обстановку в связи с землетрясением на территории Армянской ССР… остановить первый блок ААЭС».

Вдумаемся: станция отлично пережила событие, убившее в ее окрестностях 25 тысяч человек, — нигде ни одной трещины, никаких повреждений. Как можно «учитывая сейсмическую обстановку» закрыть то, что блестяще показало способность проходить через сложности такой обстановки? Кстати, станция была рассчитана на девятибалльное землетрясение — то есть куда мощнее, чем случалось на территории Армении за ее историю.

Разумеется, необоснованное решение стоило довольно дорого. После остановки было решено провести «исследование» — вырезать куски из парогенераторов, чтобы посмотреть, нет ли в них незаметных трещин. Строго говоря, такие вещи можно исследовать и без разрушений, но в эпоху антиатомных настроений казалось очевидным, что АЭС никогда не запустят, поэтому «исследование» провели, отчего первый блок лишился работоспособности. С него начали срезать часть оборудования и распродавать задешево — благо правовая и коммерческая культура того времени не видела в таких действиях ничего особенного.

Однако в 1990-х в Армении начались экономические трудности плюс часть традиционных путей подвоза топлива из-за блокады были утеряны. Поэтому к 1995-му АЭС перезапустили — правда, на половинной мощности, потому что первый энергоблок, как мы отметили выше, успешно загубили. Сегодня работает только второй, давая 40% электроэнергии республики.

И все же атомным электростанциям пришлось показать и свою способность пережить девятибалльное землетрясение. Случилось это в районе Фукусимы. Обычно события там оцениваются как тяжелейшая катастрофа в истории атомной энергетики XXI века. АЭС оказалась рядом с эпицентром сильнейшего землетрясения в истории Японии, но от самого землетрясения там не вышло из строя буквально ничего, ни один объект. Между тем размах сейсмической активности был огромным: от самого землетрясения и последующего цунами погибли или пропали без вести 18,5 тысячи японцев.

А что же цунами?

Действительно, нельзя не признать, что цунами, если оно не предусмотрено проектом, весьма опасно — впрочем, не только для реакторов, а для кого угодно. Но весь вопрос в том, как именно оно опасно.

Известные события на АЭС «Фукусима Даити» обычно воспринимаются как некая катастрофа. Напомним: хотя станция спокойно перенесла девятибалльное землетрясения без каких-либо проблем — и первую волну цунами высотой в четыре метра (исключительно сильную, по обычным меркам), — вторая волна в 15 метров превысила высоту защитной дамбы в 5,7 метра. Поэтому она залила большое количество вспомогательных зданий станции. В том числе ее дизель-генераторы, которые должны были обеспечивать охлаждение реакторов при полной потере энергоснабжения. Потеря, конечно же, произошла: цунами частично оборвало линии электропередач.

A: Здания энергоблоков; B: Высота волны цунами; C: Уровень высоты площадки АЭС; D: Средний уровень моря в этом месте; E: Волнозащитная дамба высотой в 5,5 метра / ©Wikimedia Commons

Вообще, дальше серьезных проблем могло и не быть — если бы американские проектировщики этой довольно старой станции сделали ее проект более продуманно. Почему-то в нем резервные дизель-генераторы, питающие расхолаживающие насосы в реакторах, были расположены в подвальных помещениях, а не выше уровня земли, как остальные части станции. Естественно, подвалы оказались затоплены водой. Строго говоря, в зонах, где возможно затопление, резервные генераторы располагают как раз так, чтобы их не залило водой. Но Фукусиму спроектировал так, как спроектировали, что и привело к аварии.

Сразу после начала толчков на местных реакторах сработала защита на случай тяжелых землетрясений. Стержни с поглощающим нейтроны веществом были введены в активную зону, то есть реакторы заглушили.

Однако после остановки топливо все еще выделяет некоторое количество тепла, поэтому реакторы надо какое-то время расхолаживать. Вот с расхолаживанием возникли большие проблемы. Герметичные здания-контейнменты фукусимских реакторов были спроектированы под небольшое давление в пять-шесть атмосфер, а все, что больше, аварийные клапана должны были стравливать в атмосферу, чтобы контейнмент не «порвало» этим самым нерасчетным давлением. В этом не было бы проблемы, если после потери питания японские реакторы могли бы отводить остаточное тепло от ТВЭЛ (тепловыделяющий элемент с ядерным топливом внутри) сами, без внешней подпитки водой от насосов вне контейнментов.

На горизонте горит японский нефтеперерабатывающий завод, пожар возник после землетрясения и цунами. Часть города рядом с ним затоплена. Вне Фукусимы стихия унесла тогда 18,5 тысячи жизней и уничтожила и повредила массу объектов инфраструктуры. Но об этом никто не помнит: все вспоминают только Фукусиму и радиацию, хотя от нее на этой АЭС и вокруг не умер ни один человек / ©Wikimedia Commons

Но они не могли: у японских реакторов (по сути, американского дизайна полувековой давности) был всего один контур охлаждения. На строящихся сегодня российских реакторах типа ВВЭР — двухконтурные схемы, поэтому воды в системе охлаждения намного больше, а тепло может отводиться без участия каких-либо внешних источников водоснабжения на протяжении 72 часов. На Белоярской АЭС контуров охлаждения вообще три.

Другой важный момент: фукусимский реактор — кипящий, то есть вода в нем кипит, и при ее перегреве отвод тепла от ТВЭЛ может резко снизиться. Ведь когда вся вода выкипит в пар, теплопроводность которого много ниже, теплоотвод от ядерного топлива упадет.

В такой ситуации циркониевые оболочки ТВЭЛ реагируют с водяным паром и образуют кислород и водород — крайне взрывоопасную смесь. На Фукусиме она скопилась внутри реакторов, а при подаче на объектов источников искр еще и взорвалась. Разрушения контейнментов при этом не случилось, но в самом факте взрыва ничего хорошего, конечно, нет, пусть от него никто и не погиб.

Спутниковый снимок части Фукусимской АЭС после аварии 19 марта 2011 года

Однако на современных реакторах типа ВВЭР такой сценарий принципиально невозможен — и вот почему. Контейнмент ВВЭР имеет объем в 75 тысяч кубических метров и выдерживает внутреннее давление в 50 тонн на квадратный метр. Следовательно, даже если бы ВВЭР внезапно оказался бы там, где возможны цунами, и был бы построен без защитной дамбы, то полное лишение его электроснабжения привело лишь к выкипанию воды из первого контура — и не сразу, а сильно после 72 часов. Но и после полного выкипания водяной пар не смог взломать изнутри контейнмент — в отличие от японского аналога, его размеры и прочность позволяют удержать внутри все, что там есть.

Иными словами: да, если внешний теплоноситель для охлаждения реактора не будет подаваться трое суток — только после этого вода закипит, — то возможен перегрев ТВЭЛ с их повреждением. Цирконий из оболочек ТВЭЛ способен прореагировать с водой и дать водород — но в верхней части ВВЭР стоят поглощающие водород реагенты, поэтому накопиться здесь в больших количествах водород не сможет. На этом список реалистичных последствий любых цунами можно для современных реакторов заканчивать: в крайнем случае реактор «загубит» свою активную зону, но не выпустит ничего заметно радиоактивного наружу.

Неоцененная безопасность старых реакторов

Напоследок стоит обратить внимание вот на что. Хотя реакторы Фукусимы были предельно устаревшего дизайна и поэтому куда менее безопасны, чем современные (те же ВВЭР-1200), как ни странно, они оказались весьма безопасными для населения во время цунами.

Звучит странно: ведь СМИ постоянно трубят нам о том, что Фукусима была страшной ядерной катастрофой, которая сделала необитаемыми огромные территории и до сих пор продолжает загрязнять океан радиоактивной водой. Как же можно называть ее реакторы «безопасными для населения»? Ответ на этот вопрос прост: цифры.

Когда СМИ рассказывают о фукусимских ужасах, они тщательно избегают называть конкретные цифры — уровень радиоактивного загрязнения в результате аварии. Восполним их недоработку: люди в префектуре Фукусима в результате этой аварии получили и получат за всю жизнь 10 миллизивертов.

Много это или мало? Естественный радиационный фон в Японии — 3,83 миллизиверта в год. То есть в самой вроде бы пострадавшей части страны радиационное заражение оказалось равным 2,5 года местной фоновой радиации. Если брать США, где, в силу образа жизни, радиационный фон составляет 6,24 миллизиверта в год, то речь идет о 1,5 года нормального фона.

Быть может, нормальный фон — это и так много, и превышать его даже незначительно опасно? Достоверно известно, что это не так. Например, за 30 лет работы авиапилоты на коммерческих авиалиниях получают 50 миллизивертов — впятеро больше, чем «жертвы» из префектуры Фукусима (мы просим прощения за кавычки, но при такой дозе без них писать это слово было бы нечестно). Может, пилоты безумно рискуют жизнью и все как один умирают рано? Увы, на практике средняя продолжительность их жизни на четыре-пять лет выше, чем у населения в целом.

Да что пилоты. Одна компьютерная томография дает от 10 до 30 миллизивертов — то есть за считаные минуты доставляет в организм больше радиации, чем «жертвы» Фукусимы получают за всю жизнь. Люди, которые бежали из префектуры в 2011 году и многие из которых так и не вернулись в свои дома, боятся радиации от станции, но никто никогда не слышал, чтобы они боялись компьютерной томографии. Почему так?

Все дело в том, что современное общество хронически плохо информировано: информацию оно черпает из прессы, а та… Ну, чего греха таить, она живет от кликов. Ясно, что писать про Фукусиму, значит получать больше кликов, да и сам журналист далеко не всегда достаточно трудолюбив, чтобы найти цифры доз населения от аварии и понять, что они за всю их жизнь ниже, чем от одной (!) компьютерной томографии (вполне безвредной для здоровья).

Разумеется, персонал АЭС получил несколько большие дозы — шесть человек получили от 309 до 678 миллизивертов, что уже довольно значимо. Для сравнения можно указать, что астронавт НАСА за свою карьеру не должен получать более 500 миллизивертов ни в один год службы — то есть пара работников местной атомной электростанции все же вышли за лимиты вполне безопасного облучения. Но из этих работников пока никто так и не умер от рака или иных последствий полученного ими облучения. Нет у них и хронических проблем со здоровьем, которые можно было бы связать с радиацией.

Почему? Дело в том, что даже 500 миллизивертов и более далеко не всегда ведут к раку или преждевременной смерти. В 1940-х годах в США в ходе эксперимента над, как считалось, смертельно больным человеком ему вкололи внутривенно плутоний-238, отчего он ежегодно получал 3000 миллизивертов, а за жизнь в целом — 64 тысячи миллизивертов. Тем не менее умер он в 79 лет — без рака и других заметных следов радиационного воздействия.

И это не единственный пример. Допустим, человек, выкуривающий по пачке в день, получает от сигаретного дыма в легкие 53 миллизиверта в год (сигареты содержат ряд делящихся изотопов, в частности полония). То есть за 19 лет курения получит дозу выше, чем любой работник Фукусимы или астронавт NASA.

Облучение, получаемое курильщиком от сигарет, на порядок выше того, что он получает от естественного радиационного фона, и во много раз выше, чем облучение, полученное жителями префектуры Фукусима. Но кто-нибудь видел хоть одного курильщика, который был бы этим обеспокоен? Во-первых, они об этом не знают, а то, чего мы не знаем, нас не беспокоит. Во-вторых, даже если бы они вдруг об этом узнали, узнали бы и то, что почти весь риск от курения дает вовсе не эта доза радиации, а куда более опасные микрочастицы, вызывающие сердечно-сосудистые заболевания.

Заявления в прессе о том, что якобы один из работников Фукусимы умер от рака легких через несколько лет после событий, увы, не выдерживают никакой критики. Во-первых, аварию ликвидировали более 3500 человек, а риск умереть от рака для японца — порядка 20%. За девять прошедших с тех пор лет кто-то из персонала обязательно должен был от него скончаться. Во-вторых, умерший получил много меньше упомянутых выше пиковых значений, то есть конкретно его риски были минимальными. В-третьих, он погиб от рака легких, а не от лейкемии: иными словами, от того типа рака, который не бывает последствием радиационных аварий.

А как же быть с периодическими публикациями об угрозе радиоактивной воды, которую вот-вот сольют с территории этой АЭС в Тихий океан? Все достаточно просто: вода, которую использовали для охлаждения расплавленных активных зон местных реакторов, действительно слегка радиоактивна, но именно слегка. Ее полный слив в океан приведет к росту дозы для жителей префектуры Фукусима на 2,01 микрозиверта. Микро — не милли. То есть она повлечет рост ежегодной фоновой дозы облучения живущих там японцев на менее чем одну тысячную от обычного радиационного фона. Такое превышение вполне безопасно для здоровья и сильно уступает нагрузкам от авиаперелетов. Не сможет оно заметно навредить и морским обитателям.

В общем, трудно удивляться тому, что в отчете Всемирной организации здравоохранения об аварии честно написали: дозы, полученные из-за нее, так малы, что последствия будут находиться ниже уровней, которые можно обнаружить наблюдениями или статистически.

Город Намиэ в префектуре Фукусима. После эвакуации он был покинут людьми — безо всяких объективных причин, в результате одной только эпидемии паники

Конечно, это не значит, что события в Фукусиме не убили множество японцев: несомненно, да. Вот только не радиацией, а «психической эпидемией». Дело в том, что политики падают на нашу планету не из космоса, а получаются из обычных людей. Поэтому ровно так же, как обычные люди, они понятия не имеют, сколько миллизивертов угрожают человеку в зоне Фукусимы и сколько он может получить при безобидном походе на компьютерную томографию.

Поэтому им казалось, что люди в префектуре подверглись страшной опасности. И 164 тысячи местных эвакуировали. Из-за связанных с эвакуацией стрессов и травм, а также плохого ухода за пожилыми и больными людьми в итоге случилось 2259 избыточных смертей (официальные оценки японского правительства).

Проблема в том, что этих людей никак нельзя записать в жертвы радиации: это жертвы плохого образования. Причем даже не своего, а японских журналистов и властей — именно их пробелы в знаниях о мире привели к решению об эвакуации.

Как заключает научная работа 2016 года, опубликованная в рецензируемом журнале Process Safety and Environmental Protection, эвакуация в итоге вызвала множество смертей и заметное сокращение продолжительности жизни эвакуированных. И это, подчеркивают авторы, несмотря на то, что на деле никакой нужды в ней не было. По-хорошему, тех, кто принимал такое решение, надо судить, но, увы, сделать это некому: судьи не читают научные журналы.

От безопасности для других — к безопасности для себя

Анализ возможностей террористических атак на АЭС, воздействия на них падающих самолетов и землетрясений показывает, что никакой угрозы для окружающих в случае всех этих событий не несут даже самые старые атомные электростанции — построенные в 60-х и 70-х.

Единственный случай, когда внешней угрозе удалось вывести АЭС из работоспособного состояния, — это уникальное цунами, случающееся в Японии реже, чем раз в тысячу лет. Пятнадцатиметровая волна от него действительно опасна, но даже она смогла лишь вывести из строя реакторы: они «умерли» на боевом посту, но ни один человек при этом не погиб. На фоне 18,5 тысячи погибших от тех событий на неядерных японских объектах Фукусима выглядит неплохо. Она показывает, что степень устойчивости атомной энергетики в случае внешних угроз действительно серьезно недооценивается.

Это не значит, что АЭС некуда расти. Новые конструкции типа ВВЭР-1200 в фукусимской ситуации не только не причинили бы никому вреда, но и с высокой вероятностью не вышли бы из строя сами: трое суток они бы расхолаживались за счет «встроенной» пассивной безопасности. И даже если бы за эти дни не подвезли работающие генераторы, сам реактор смог бы удержать ситуацию от взрыва водорода (за счет встроенных поглотителей этого газа). Наконец, после Фукусимы строить АЭС в зоне цунами будут только при наличии дамбы, защищающей даже от такой волны, что бывает раз в тысячу лет.

Нашли опечатку? Выделите фрагмент и нажмите Ctrl + Enter.
Подписывайтесь на нас в Telegram, Яндекс.Новостях и VK
20 ноября
Березин Александр

Несмотря на отмену попытки «экономичной» ловли первой ступени, шестой испытательный полет Starship был успешным. Корабль — вторая ступень системы впервые продемонстрировала возможность маневра на орбите. Первая ступень после приводнения неожиданно для всех смогла пережить два взрыва, не утратив плавучесть. Среди наблюдавших за испытанием был Дональд Трамп.

Позавчера, 17:55
Наталия Лескова

Зачем нужно изучать ядра планет? Как зарождалась эта наука и почему она важна? Что такое гамма-всплески и зачем нам знать, откуда они идут? Остается ли Россия великой космической державой и зачем вообще это всё надо? Об этом рассказывает Игорь Георгиевич Митрофанов, руководитель отдела ядерной планетологии Института космических исследований РАН, доктор физико-математических наук, академик Международной академии астронавтики.

Позавчера, 11:06
Evgenia

Китайские исследователи удерживали изотоп иттербия-173 в состоянии «кота Шредингера» более 20 минут. Эта работа приблизила точность измерений фазового сдвига квантовой системы к теоретически возможному пределу.

16 ноября
Evgenia

Международная коллаборация физиков под руководством ученых из Йельского университета в США представила самые убедительные на сегодня подтверждения существования нового типа сверхпроводящих материалов. Доказательство существования нематической фазы вещества — научный прорыв, открывающий путь к созданию сверхпроводимости совершенно новым способом.

19 ноября
Андрей

Американские ученые проанализировали данные о поедании фекалий животными, чтобы выяснить, какие причины стоят за этим поведением и какие закономерности можно проследить. В результате они разделили всю выборку более чем из 150 видов на семь категорий по тому, что заставляет зверей питаться таким сомнительным продуктом.

18 ноября
Юлия Трепалина

Работать под началом шефа-абьюзера тяжело, но свежее исследование показало, что бывают варианты похуже. Ученые выяснили, что еще негативнее на моральный дух и производительность труда сотрудников влияет, когда во главе команды стоит самодур, у которого вспышки агрессии непредсказуемо сменяются этичным поведением.

30 октября
Елизавета Александрова

Под рыжим верхним слоем с виду обычного камня открылся целый калейдоскоп довольно неожиданных оттенков. Это особенно интересно с учетом того, где лежит камень — в марсианском кратере, который по всем признакам когда-то был озером.

16 ноября
Evgenia

Международная коллаборация физиков под руководством ученых из Йельского университета в США представила самые убедительные на сегодня подтверждения существования нового типа сверхпроводящих материалов. Доказательство существования нематической фазы вещества — научный прорыв, открывающий путь к созданию сверхпроводимости совершенно новым способом.

31 октября
Татьяна

Органические молекулы с пи-связью образуют очень устойчивые геометрии, которые не любят нарушаться. В 1924 году немецкий химик Юлиус Бредт сформулировал соответствующий запрет, вошедший в учебники химии. Тем не менее это в некоторых случаях возможно. В новой работе американские исследователи представили несколько «антибредтовских» соединений из класса олефинов.

[miniorange_social_login]

Комментарии

44 Комментариев
Anton Zhdanov
27.04.2023
-
0
+
Хм. Про плутоний обжатый взрывом то понятно. Но термоядерное оружие, например, использует ядерный взрыв для "зажигания" второй реакции синтеза. В Царь-бомбе собирались использовать 3 ступени, хотя имрользовали по итогу 2. Не может ли условная бетонобойная бомба с термоядерной боеголовкой направленная прямо в контейтмент таким образом, чтобы плазменный шар взрыва точно охватил реактор, заодно быстро сжечь и топливо внутри, использовав его как дополнительную ступент значительно усилив взрыв? Возьмем оружейный уран пускай не в 20% а в 40%. При твеле с 5% содержанием U235 и 80тонной загрузкой, мы получим 10 тонн оружейного U235. Другое дело, что сама реакция происходит очень быстро и даже шара плазмы от термоядерного взрыва возможно недостаточно чтобы поджечь топливо. Но не уверен, что это могут сказать наверняка.
the sta
20.03.2022
-
0
+
А как насчёт токсисности элементов, образованных после распада? Есть данные насколько они опасны? Просто у японцев уже есть опыт отравления тяжёлыми металлами(особенно ртутью) и завершением властей что всё ок. Отсюда и паранойя у японцев
    Основная масса топлива АЭС ни во что не распадается -- по чисто физическими причинам. А именно: уран-238 (основная часть ОЯТ) весьма стабилен.. Общий объем продуктов распада в загрузке одной АЭС -- считаные тонны. Для сравнения общемировое загрязнение тяжелыми металлами измеряется сотнями тысячами тонн в год. И в Японии его тоже немало. Так что нет, паранойя японских властей с продуктами распада ядерного топлива никак не связана -- там чистая радиофобия.
Арина Р
07.12.2020
-
0
+
Добрый вечер. Спасибо вам за статью, очень интересно читать. Единственное, я нахожу неправильными данные из предложения "Допустим, человек, выкуривающий по пачке в день, получает от сигаретного дыма в легкие 53 миллизиверта в год (сигареты содержат ряд делящихся изотопов, в частности полония).'' Источник,на котрый вы ссылаетесь, не содержит ссылки на сайт NIH с данными об исследовании с такими цифрами. Зато есть другой источник: Radiation Protection Dosimetry, vol 123, p 68, https://www.newscientist.com/article/dn11974-tobaccos-natural-radiation-dose-higher-than-after-chernobyl/ , вот вырезка из данного тома этого журнала:
-
0
+
Город Намиэ в префектуре Фукусима. После эвакуации он был покинут людьми — безо всяких объективных причин, в результате одной только эпидемии паники ---- у них там что-то феерическое с проводами воздушными творится, прямо как в Бангладеш или в Гвинее какой-нибудь....
-
0
+
Александр, а в случае военных действий, АЭС так же будут безопасны?
    Смотря каких боевых действий. Обычной войны? Да. Ядерной? Если ударят боеголовками по энергоблокам -- они однозначно выйдут из строя. Будет выброс, вероятно, околочернобыльский, где-то на несколько тысячи избыточных смертей от рака (в Чернобыле было 4000). Но вот вопрос: будут ли по ним расходовать боеголовки? При попадании в город ЯБЧ убьет заведомо больше людей, чем при попадании в реактор.
    Вот и дожили до практического воплощения вопроса.
    +
      ещё комментарии
-
0
+
Автор намекает что самолет, даже самый тяжелый, это все-таки не бетонобойная бомба GBU-28 и при всем желании террористов не сможет серьезно повредить конструкции АЭС. Даже если разгонится чуть быстрее 500 км/ч
    Этот другой вопрос . Но отказывать самолету в способности разогнаться в пикировании быстрее 500 км/ч неверно.) И не важно, террористы на борту или причина падения другая. С точки зрения защиты реактора это просто падение, случайное или намеренное без разницы, и физика и защита одна и та же для всех случаев.
    +
      ещё комментарии
      "Но отказывать самолету в способности разогнаться в пикировании быстрее 500 км/ч неверно.) " По-моему в тексте вполне изложено, что управление авилайнером на крутом пикировании будет крайне затруднено Как он попадет в реактор, если пилот не сможет им хорошо прицелиться? Случайно? Стоит, вероятно, напомнить, что реактор по размерам куда меньше контейнемента, и любое попадание "не по центру" будет означать промах мимо реактора. И это я еще даже не упомянул того факта, что за контейнментом реактор защищает еще одна ж/б конструкция -- окружающая собственно активную зону.
"на скорости 500 километров в час — а больше авиалайнеру не набрать даже в пикировании," - недооцениваете вы самолеты, Александр) много раз в пикировании бились на гораздо больших скоростях. И 600, и 700, и 800 км/ч. Статистики полно И почему только авиалайнер. Боевые тоже бьются в пикировании.
    Александр вполне дооценивает самолеты. Упасть в пикировании просто в землю может практически любой самолет. См. "Зеро" с сего "затягиванем в пикирование". Прицельно попасть на пикировании в объект, с линейными размерами заметно меньше самого самолета -- на скоростном крутом пикировании у авиалайнера не выйдет. Это не пикировщик.
    +
      ещё комментарии
    Max Koval
    02.11.2020
    -
    0
    +
    Обычно как раз не превышает никогда 500
Автор пишет что 5-6 атмосфер это мало, потом восхваляет 50 т/м2, хотя это всего +/- 4,9 атмосфер. Опечатка или игра числами?
    Нет, это не опечатка. Просто я не "восхваляю" 50 тонн на кв. м, а пишу (см. текст): "контейнмент ВВЭР имеет объем в 75 тысяч кубических метров и выдерживает внутреннее давление в 50 тонн на квадратный метр." Где же тут восхваление? Тут указывается объем и расчетное давление. Ключевая разница фукусимского контеймента и ВВЭР в том, что у них разная ситуация в случае полного закипания всей воды внутри контаймента. 75 тыс кубов -- это, если представить условным кубом -- имеет ребро чуть более 42 метров. Росатомовцы специально это подчеркивают: "Объем контайнмента довольно большой – 75 тыс. куб. метров, риск скопления в нем водорода во взрывоопасной концентрации значительно меньше, чем на АЭС «Фукусима-1»": https://rosatom.ru/about-nuclear-industry/safety-russian-npp/ У фукусимского реактора в здании стоит еще и бассейн с водой приличного объема. Когда вода внутри второго (внешнего) контеймента закипала, она дала давление больше пяти атмосфер, отчего и была утечка. В случае закипания всей воды в ВВЭР давление не должно превысить пяти атмосфер, то есть прорыв случаться не должен: для него внутри реактора просто не хватит воды. То есть разница именно в том, что если у того реактора объем недостаточен, чтобы удержать всю закипевшую воду, то у ВВЭР достаточен. А фукусимские пять атмосфер в тексте я называю низкими потому, что внутренний контейнмент (в терминологии самой ТЕПКО) выдерживает куда более высокие давления -- десятки атмосфер. Поэтому сама эта японская компания называет давление, на которое рассчитан внешний контейнмент "низким" https://www.world-nuclear.org/information-library/safety-and-security/safety-of-plants/appendices/fukushima-reactor-background.aspx
Yokai InSpace
02.11.2020
-
0
+
Александр, добрый день! Возник спор по поводу скорости самолета. 500 км/ч это неправильно переведённые мили в километры или на низких высотах больше 500 не разгонится самолёт?
    При пикировании еще как разгонится. При крутых пикированиях самолеты разбивались на скоростях 600-800 км/ч. Это видно по записям их бортовых регистраторов параметров полета. "Сдвиг ветра: ростовский "Боинг" врезался в землю на скорости 600 км/ч" "АН-148 ВРЕЗАЛСЯ В ЗЕМЛЮ НА СКОРОСТИ 800 КМ/Ч" "Спустя примерно полчаса после захвата самолет на скорости 748 км/ч врезался в северную башню Всемирного торгового центра в Нью-Йорке, между 93-им и 99-ым этажами. " А в другую башню врезался на скорости свыше 900 км/ч. Так что 500 км/ч отнюдь не граница скорости у земли. Тяга двигателей вещь нешуточная.
    Комментарий удален пользователям или модератором...
    Нет, это не "неправильно переведенные мили". Это результат того, что управляемый полет авиалайнера на уровне земли на скорости выше 500 км/ч закончится крушением -- возможностей его рулей не рассчитаны на такие упражнения. Скорость пикирования, которую упоминает Николай Ц. выше я в рассмотрение не брал, потому что управляемое крутое пикирование на авиалайнере с попадание в конкретный объект таких размеров -- это не очень реалистично. Аналогичным образом я не рассматривал попадания в башни-близнецы -- это объекты намного более крупных размеров, чем контеймент. Именно поэтому в США при моделировании столкновения с контейнментом и выбрали скорость 500 км-ч, а не 800 или 900. На 800 авиалайнер может гарантированно попасть только в небоскреб -- в контейнмент прицельно спикировать не выйдет. Авиалайнер -- это не пикирующий бомбардировщик с воздушными тормозами, типа Ю-87 или хотя бы Су-25. Это объект, который никто даже не проектировал для управляемого пикирования на больших скоростях -- да еще и с нуждой в высокоточном попадании в процессе этого пикирования. Атомный реактор -- это не громадина. вроде Пентагона или башен-близнецов. Это объект, чьи реальный размеры не так уж и велики, и пытаться попасть в него на большой скорости или крутом пикировании на авиалайнере -- это значит пытаться попасть из пушки в воробья. Причем прямым попаданием. Шансы есть, но не на полных скоростях. Реалистично только пологое пикирование, но оно снизило бы шансы террористов -- на нем они скорее ударили бы по крышке контейнмента "плашмя", отчего самолет скользнул бы по контейнменту, то есть не смог бы направить в него основную часть своей энергии.. Попасть на пикировании в наземную стену контеймента будет не очень просто, мягко говоря. Кстати, в тексте это объясняется: "Дело в том, что при попытке спикировать под большим углом на таком самолете любой пилот либо потеряет контроль над машиной (чья система управления исходно не была предназначена для таких резких маневров), либо вообще разрушит самолет в воздухе. Атака возможна только при пологом пикировании (то есть в самую толстую, горизонтальную часть контейнмента) и на умеренной для авиалайнера скорости. Иначе (на большой скорости) точно управляемый полет в приземном слое реализовать сложно, а без хорошей управляемости «воткнуть» самолет в не самый большой объект будет сложно." И мнение это не только мое: https://www.cbsnews.com/news/reactors-would-survive-jet-attack/
    +
      ещё комментарии
      Alex Shest
      06.11.2020
      -
      0
      +
      В ссылке Вашей всё-таки 500 миль в час. Значит это 900 км в час "The report did not consider the scenario of a reactor being hit by an airplane flying at more than 500 mph, the speed at which the two planes hit the World Trade Center last September. A pilot flying closer to the ground and aiming at a nuclear reactor would not be able to control an airplane at 500 mph because of pressure waves that would be created, it said."
        Нет, просто не поняли что значит ваша цитата. Кроме того, неправильно перевели мили (1,6 км) в километры -- получив 900 из 500. Хотя на самом деле 500 на 1,6 будет 800, а не 900. А по моей ссылке написано именно то, что я сказал: что сценарий 500 миль в час нельзя рассматривать, потому что прицельная атака на такой скорости у земли невозможна. И то же самое отмечает цитата, которую вы привели. А указанные мною 500 км/ч там тоже вполне есть: "The study was based on scenarios in which the wide-bodied aircraft crashed into a nuclear reactor traveling at about 300 miles per hour". Примерно 300 миль в час из исследования -- это и есть 500 км/ч. Просто читать надо внимательно.
"самолеты — это конструкции из дюралюминиевых сплавов с типичной толщиной 1,5 миллиметра или в тысячу раз меньше. " - опечатка, видимо?
Комментарий удален пользователям или модератором...
Roman Markin
02.11.2020
-
0
+
Комментарий удален пользователям или модератором...
Affidavit Donda
02.11.2020
-
0
+
Жаль, что обойдена вниманием чернобыльская авария. Впрочем и там радиофобам тоже поживиться нечем.
Подтвердить?
Подтвердить?
Причина отклонения
Подтвердить?
Не получилось опубликовать!

Вы попытались написать запрещенную фразу или вас забанили за частые нарушения.

Понятно
Жалоба отправлена

Мы обязательно проверим комментарий и
при необходимости примем меры.

Спасибо
Аккаунт заблокирован!

Из-за нарушений правил сайта на ваш аккаунт были наложены ограничения. Если это ошибка, напишите нам.

Понятно
Что-то пошло не так!

Наши фильтры обнаружили в ваших действиях признаки накрутки. Отдохните немного и вернитесь к нам позже.

Понятно
Лучшие материалы
Войти
Регистрируясь, вы соглашаетесь с правилами использования сайта и даете согласие на обработку персональных данных.
Ваша заявка получена

Мы скоро изучим заявку и свяжемся с Вами по указанной почте в случае положительного исхода. Спасибо за интерес к проекту.

Понятно
Ваше сообщение получено

Мы скоро прочитаем его и свяжемся с Вами по указанной почте. Спасибо за интерес к проекту.

Понятно