Уведомления
Авторизуйтесь или зарегистрируйтесь, чтобы оценивать материалы, создавать записи и писать комментарии.
Авторизуясь, вы соглашаетесь с правилами пользования сайтом и даете согласие на обработку персональных данных.
Российские ученые повысили точность рекомендательных систем для соцсетей и онлайн-магазинов на 50 процентов
Сотрудники лаборатории исследований искусственного интеллекта T-Bank AI Research существенно улучшили работу автоматизированной рекомендательной системы. Ключевым звеном в их решении стала существенная оптимизация одного из самых популярных алгоритмов для подбора рекомендаций.
Научная группа из T-Bank AI Research серьезно оптимизировала алгоритм байесовского персонализированного ранжирования (БПР) — один из ключевых компонентов рекомендательных систем современных соцсетей и онлайн-магазинов. Именно на ее основе реализованы почти все новостные ленты в соцсетях, как и рекомендации пользователям при онлайн-шопинге.
Этот алгоритм анализирует множество переменных и их вероятностных зависимостей так, чтобы уловить, какие именно действия человека в соцсети (или потенциального покупателя в магазине) чаще всего вероятностно связаны с его выбором того, на какую именно новость, пост или товар он хочет кликнуть. БПР крайне популярно из-за относительно умеренных требований к ресурсам при достаточно высокой эффективности.
Авторы новой работы представили ее на ключевой Всемирной конференции по рекомендательным системам ACM RecSys, которая прошла с 14 по 18 октября в Бари (Италия). Текст принят к публикации в сборнике работ конференции Reproducibility track of the ACM RecSys и доступен на сервере препринтов Корнеллского университета. Исследователи взялись проанализировать, в каких именно случаях БПР справляется со своими задачами хуже или лучше обычного.
В результате ученым удалось показать, что практическая реализация БПР часто бывает весьма разной и в целом ряде случаев как минимум неоптимальна. Исходная научная работа о БПР, вышедшая 15 лет назад, хотя и получила едва ли не семь тысяч цитирований в других научных статьях, похоже, не всегда достаточно тщательно изучалась теми, кто брался за ее реализацию. По оценкам исследователей, итоговое снижение эффективности алгоритма в реализации может достигать 50% от максимальной, теоретически возможной, эффективности.

Авторы не ограничились этим выводом. Они также создали свою модель БПР и тщательно настроили ее гиперпараметры (так называют параметры, настраиваемые до запуска модели и неизменяемые в процессе ее работы). Затем протестировали ее эффективность на задачах из реального мира. Результаты оказались выше, чем у других реализаций модели.
Например, производительность в точных рекомендациях вышла на 50% выше, чем у модели из популярного опенсорс-фреймворка RecBole. Кроме того, она была на 10% выше, чем у модели Mult-VAE. Отметим, что Mult-VAE — модель для рекомендательных систем, основанная на нейронных сетях (разработка лаборатории Netflix), и считается одним из лидеров в отрасли, если не бесспорным лидером.
Сравнение эффективности для всех моделей шло по одному сценарию на одном и том же наборе данных — так называемом Наборе из миллиона песен. Критерием точности работы модели было то, насколько точно первые сделанные ею 100 рекомендаций совпали с интересами пользователя, проходящего через модель.
Поскольку работа исследователей из научно-исследовательской лаборатории T-Bank AI Research теперь в открытом доступе (и есть на GitHub), ее могут применять разработчики по всему миру для оптимизации самых разных рекомендательных систем. Это позволит покупателям быстрее находить нужные им товары в интернет-магазинах, а пользователям соцсетей — получать более осмысленную выдачу в лентах новостей и подписках. Как не раз отмечал Naked Science, проблемы с такими лентами давно стали буквально бичом для множества современных людей.
Голоса «детей» викторианской эпохи показали, как индустриализация изменила акценты английского языка
Современные акценты английского языка во многом отражают социально-экономические процессы, происходившие в Великобритании в викторианскую эпоху, то есть с 1837 года по 1901 год. Лингвисты доказали это, проанализировав архивные аудиозаписи разговоров с людьми, которые родились в указанный период и после него.
В 1980-х годах большую популярность приобрела борьба с озоновыми дырами. Из-за нее хладагенты из хлорфторгулеродов заменили на аналоги из гидрофторуглеродов. Теперь ученые выяснили, что эта замена — как и следующие за ней, уже в рамках борьбы с глобальным потеплением — ведет к накоплению в атмосфере довольно опасных «вечных химикатов».
Когнитивные психологи доказали, что человекообразные обезьяны способны понимать концепт «понарошку». Бонобо Канзи, владевший языком символов, успешно отслеживал перемещения невидимого сока и воображаемого винограда. Это открытие опровергает теорию о том, что способность к фантазии — уникальная черта человека.
Биологи использовали данные отлова змей за 22 года, чтобы объяснить появление редких ядовитых рептилий в засушливых и нетипичных для них районах штата Гоа. Анализ показал, что королевские кобры Западных Гат используют железнодорожную сеть как скоростной коридор для расселения, случайно путешествуя в товарных вагонах из родных лесов к побережью.
Астрономы впервые напрямую связали основание гигантского джета с «тенью» первой «сфотографированной» сверхмассивной черной дыры M87*. Анализ данных, полученных с помощью Телескопа горизонта событий (EHT), позволил проследить, где именно формируется релятивистская струя и лучше понять механизмы ее возникновения.
Яркий надувной тюбинг, в народе прозванный «ватрушкой», стал символом зимнего отдыха. Он кажется удобным, мягким и потому — безопасным. Это ощущение обманчиво и ежегодно приводит к тысячам серьезных травм. В чем же кроется фундаментальная опасность этого популярного развлечения? На этот вопрос для нашего издания ответил Олег Рубан, кандидат технических наук, доцент кафедры физики РТУ МИРЭА, объяснив, почему законы физики превращают безобидный на вид тюбинг в неуправляемый снаряд.
От рыб произошли все наземные позвоночные, включая нас, но как именно рыбы стали главным населением морей — до последнего времени оставалось неясным. Авторы новой научной работы попытались доказать, что причиной этого было вымирание, возможно, вызванное белыми ночами.
Международная команда палеонтологов описала новый вид динозавра размером с крупную современную птицу. Он носил на голове плотный костяной нарост, который эти животные, возможно, использовали для внутривидовых разборок. Находка показывает, что даже мелкие хищники мелового периода могли решать конфликты не только когтями и зубами, но и ударами головой.
Образцы грунта, взятые астронавтами полвека назад, вложили еще один важный кирпич в здание научной картины мира: гипотеза о том, что Земля исходно была сухой, не стыкуется с фактами. Похоже, идею о невозможности сохранения большого количества воды на «теплых» планетах придется пересмотреть.
Вы попытались написать запрещенную фразу или вас забанили за частые нарушения.
Понятно
Из-за нарушений правил сайта на ваш аккаунт были наложены ограничения. Если это ошибка, напишите нам.
Понятно
Наши фильтры обнаружили в ваших действиях признаки накрутки. Отдохните немного и вернитесь к нам позже.
Понятно
Мы скоро изучим заявку и свяжемся с Вами по указанной почте в случае положительного исхода. Спасибо за интерес к проекту.
Понятно
Последние комментарии