Уведомления
Авторизуйтесь или зарегистрируйтесь, чтобы оценивать материалы, создавать записи и писать комментарии.
Авторизуясь, вы соглашаетесь с правилами пользования сайтом и даете согласие на обработку персональных данных.
Инженеры Google описали ключевой изъян машинного обучения, приводящий к ошибкам ИИ
Тема искусственного интеллекта в последние годы стала невероятно популярной. Однако, несмотря на все достижения в этой области, ИИ по-прежнему чаще человека ошибается практически в любом классе задач. Специалисты Google сформулировали один из ключевых недостатков важнейшего компонента создания искусственного интеллекта — машинного обучения — и предложили способ его компенсации.
Научная работа опубликована на портале arXiv. В ней описано понятие недостаточной детализации (underspecification) в машинном обучении (machine learning). Авторы указывают на то, как в привычном процессе обучения нейросетевых алгоритмов слишком часто возникают неочевидные поначалу аномалии. В результате обученный таким образом алгоритм будет выдавать непредсказуемые или ошибочные выводы.
По мнению команды специалистов из Google, проблема в следующем. Во время обучения алгоритма на некоем наборе данных искусственный интеллект может сделать не совсем то обобщение, которое считают необходимым или эффективным его создатели. И сам по себе этот факт не является чем-то негативным, наоборот — в этом и есть «сила» нейросетей. Но, тренируя алгоритм, программисты не учитывают и далеко не всегда могут знать, что именно он выбрал в качестве дополнительных критериев. В итоге, классифицируя результаты как точные и неточные, человек обучает ИИ не совсем тому, чему хотел.
Результатом подобного обучения могут стать непредсказуемые ошибки. Например, в эпидемиологии есть математическая модель, описывающая течение эпидемии. Она строится на ключевых параметрах: коэффициенте распространения инфекции (R0) и продолжительности времени, пока заболевший заразен (D). Теоретически даже на ранних стадиях пандемии можно проанализировать эти данные по нескольким случаям и предсказать ее ход. Это крайне важно для властей и медиков, которые будут иметь понимание, когда переполнятся больницы и в какой момент и как нужно реагировать на статистику.
Однако на практике обученный по массивам медицинских данных искусственный интеллект может выдавать разные предсказания. И выбор из них реалистичного — нетривиальная задача. Дело в том, что во время обучения алгоритм будет учитывать множество побочных параметров. Так же делают и люди, но они могут объяснить свои решения, а ИИ — нет. Таким образом, необходимо еще на стадии создания алгоритма и его обучения учитывать все больше параметров. В этот момент появляется второе ключевое ограничение.
Подобных второстепенных параметров может быть огромное количество, и далеко не все из них будут так же важны для человека, как для нейросети. Фактически предсказать только по результату (прогнозу) модели, на основании каких второстепенных факторов была достигнута нужная точность, невозможно. И тем более нельзя сходу оценить, как именно изменится работа алгоритма при других масштабах поступающих данных. Свои соображения авторы описываемой работы наглядно и подробно иллюстрируют четырьмя примерами, в которых ИИ либо традиционно считается более точным, чем человек, либо его использование предполагается наиболее перспективным. Речь о компьютерном зрении, распознавании медицинских изображений и речи , а также медицинских предсказаниях на основе статистики.
Однако не все так ужасно. Авторы работы предлагают методику стрессового тестирования искусственного интеллекта. По их мнению, можно ввести в процесс машинного обучения обязательные стресс-тесты на специально подготовленных данных. Они могут быть нарочно выходящими за рамки моделей или хорошо изученными экстремальными примерами из реальной жизни. В любом случае с их помощью будут сразу обнаружены основные аномалии алгоритма.
Несомненно, озвученные сотрудниками Google идеи не являются революционными и зачастую используются на практике. Но они еще не стали стандартом даже в самых критичных для нас областях применения ИИ. И, конечно, для многих профессионалов вышеописанная работа может выглядеть простой и очевидной. Тем не менее в ней от элементарных моделей до сложнейших симуляций показано влияние недостаточной детализации на результат. Кроме того, авторы работы собрали воедино идеи и выводы из колоссального количества публикаций на смежные темы. Это позволяет назвать ее отличным промежуточным итогом в развитии современных наработок в области ИИ.
На юге Шотландии расположена деревня, издавна связанная с легендой о Мерлине — великом волшебнике, наставнике короля Артура. Ранее эта история, как и многие другие части артуровского цикла, не имела никаких археологических подтверждений — только крайне запутанные упоминания в древних манускриптах. Теперь ситуация изменилась.
Кошки, как и собаки, умеют бегать за игрушками и возвращать их хозяевам. Это науке хорошо известно. Но кто из них делает это охотнее? Чтобы ответить на вопрос, американские ученые решили сравнить оба вида домашних питомцев. Они назвали наиболее восприимчивые к этой игре породы, а также порассуждали о природе такого поведения.
За последние 20 лет количество извлеченных из океана микроорганизмов значительно увеличилось, однако расшифровать их геном и использовать эту информацию в биотехнологии и медицине было непросто. Результаты нового исследования показали, что обнаруженные организмы можно использовать для решения таких серьезных проблем, как нехватка противомикробных препаратов, пластиковое загрязнение, а также при разработке новых ферментов для редактирования генома.
Месторождения самородного золота приурочены главным образом к кварцевым жилам. Считается, что оно осаждается из горячих магматических растворов, внедряющихся по трещинам в горных породах. Однако образование крупных скоплений золота представляет собой минералогическую загадку. Австралийские ученые предположили, что дело — в пьезоэлектрических свойствах кварца, которые под действием частых землетрясений способствуют образованию больших скоплений драгоценного металла.
На юге Шотландии расположена деревня, издавна связанная с легендой о Мерлине — великом волшебнике, наставнике короля Артура. Ранее эта история, как и многие другие части артуровского цикла, не имела никаких археологических подтверждений — только крайне запутанные упоминания в древних манускриптах. Теперь ситуация изменилась.
В ноябре 2022 года астрономы заметили кое-что необычное — «странный радиокруг», расположенный вблизи галактического центра Млечного Пути. Обнаружить светящееся кольцо в месте, где его быть не должно, удалось с помощью одного из самых мощных в мире радиотелескопов — MeerKAT в ЮАР. Ученые считают, что радиокруг возник из-за массивной звезды, с поверхности которой звездный ветер сдувает внешние слои.
Месторождения самородного золота приурочены главным образом к кварцевым жилам. Считается, что оно осаждается из горячих магматических растворов, внедряющихся по трещинам в горных породах. Однако образование крупных скоплений золота представляет собой минералогическую загадку. Австралийские ученые предположили, что дело — в пьезоэлектрических свойствах кварца, которые под действием частых землетрясений способствуют образованию больших скоплений драгоценного металла.
На юге Шотландии расположена деревня, издавна связанная с легендой о Мерлине — великом волшебнике, наставнике короля Артура. Ранее эта история, как и многие другие части артуровского цикла, не имела никаких археологических подтверждений — только крайне запутанные упоминания в древних манускриптах. Теперь ситуация изменилась.
Предприятия Научного дивизиона госкорпорации «Росатом» и группа строительных компаний «Реформа» заключили договор о сотрудничестве и впервые применили для демонтажа высотных металлических конструкций — кранов-перегружателей — мобильный лазерный комплекс. МЛК, разработанный в стенах одного из институтов «Росатома», не имеет аналогов в стране.
Природа она дура по большому счетуА природа по-Вашему, это что? Создатель, классная дама или процесс?
Эмоциональное окрашивание явлений весьма характерно для стадных животных.Т.е. нестадные животные, по-Вашему", не обладают понятиями "вкусно - не вкусно", "мягко - жёстко", "комфортно - не комфортно"?
Природа она дура по большому счетуА природа по-Вашему, это что? Создатель, классная дама или процесс?
Эмоциональное окрашивание явлений весьма характерно для стадных животных.Т.е. нестадные животные, по-Вашему", не обладают понятиями "вкусно - не вкусно", "мягко - жёстко", "комфортно - не комфортно"?
Вы попытались написать запрещенную фразу или вас забанили за частые нарушения.
ПонятноИз-за нарушений правил сайта на ваш аккаунт были наложены ограничения. Если это ошибка, напишите нам.
ПонятноНаши фильтры обнаружили в ваших действиях признаки накрутки. Отдохните немного и вернитесь к нам позже.
ПонятноМы скоро изучим заявку и свяжемся с Вами по указанной почте в случае положительного исхода. Спасибо за интерес к проекту.
ПонятноМы скоро прочитаем его и свяжемся с Вами по указанной почте. Спасибо за интерес к проекту.
Понятно
Комментарии