Уведомления
Авторизуйтесь или зарегистрируйтесь, чтобы оценивать материалы, создавать записи и писать комментарии.
Авторизуясь, вы соглашаетесь с правилами пользования сайтом и даете согласие на обработку персональных данных.
Инженеры Google описали ключевой изъян машинного обучения, приводящий к ошибкам ИИ
Тема искусственного интеллекта в последние годы стала невероятно популярной. Однако, несмотря на все достижения в этой области, ИИ по-прежнему чаще человека ошибается практически в любом классе задач. Специалисты Google сформулировали один из ключевых недостатков важнейшего компонента создания искусственного интеллекта — машинного обучения — и предложили способ его компенсации.
Научная работа опубликована на портале arXiv. В ней описано понятие недостаточной детализации (underspecification) в машинном обучении (machine learning). Авторы указывают на то, как в привычном процессе обучения нейросетевых алгоритмов слишком часто возникают неочевидные поначалу аномалии. В результате обученный таким образом алгоритм будет выдавать непредсказуемые или ошибочные выводы.
По мнению команды специалистов из Google, проблема в следующем. Во время обучения алгоритма на некоем наборе данных искусственный интеллект может сделать не совсем то обобщение, которое считают необходимым или эффективным его создатели. И сам по себе этот факт не является чем-то негативным, наоборот — в этом и есть «сила» нейросетей. Но, тренируя алгоритм, программисты не учитывают и далеко не всегда могут знать, что именно он выбрал в качестве дополнительных критериев. В итоге, классифицируя результаты как точные и неточные, человек обучает ИИ не совсем тому, чему хотел.
Результатом подобного обучения могут стать непредсказуемые ошибки. Например, в эпидемиологии есть математическая модель, описывающая течение эпидемии. Она строится на ключевых параметрах: коэффициенте распространения инфекции (R0) и продолжительности времени, пока заболевший заразен (D). Теоретически даже на ранних стадиях пандемии можно проанализировать эти данные по нескольким случаям и предсказать ее ход. Это крайне важно для властей и медиков, которые будут иметь понимание, когда переполнятся больницы и в какой момент и как нужно реагировать на статистику.
Однако на практике обученный по массивам медицинских данных искусственный интеллект может выдавать разные предсказания. И выбор из них реалистичного — нетривиальная задача. Дело в том, что во время обучения алгоритм будет учитывать множество побочных параметров. Так же делают и люди, но они могут объяснить свои решения, а ИИ — нет. Таким образом, необходимо еще на стадии создания алгоритма и его обучения учитывать все больше параметров. В этот момент появляется второе ключевое ограничение.
Подобных второстепенных параметров может быть огромное количество, и далеко не все из них будут так же важны для человека, как для нейросети. Фактически предсказать только по результату (прогнозу) модели, на основании каких второстепенных факторов была достигнута нужная точность, невозможно. И тем более нельзя сходу оценить, как именно изменится работа алгоритма при других масштабах поступающих данных. Свои соображения авторы описываемой работы наглядно и подробно иллюстрируют четырьмя примерами, в которых ИИ либо традиционно считается более точным, чем человек, либо его использование предполагается наиболее перспективным. Речь о компьютерном зрении, распознавании медицинских изображений и речи , а также медицинских предсказаниях на основе статистики.
Однако не все так ужасно. Авторы работы предлагают методику стрессового тестирования искусственного интеллекта. По их мнению, можно ввести в процесс машинного обучения обязательные стресс-тесты на специально подготовленных данных. Они могут быть нарочно выходящими за рамки моделей или хорошо изученными экстремальными примерами из реальной жизни. В любом случае с их помощью будут сразу обнаружены основные аномалии алгоритма.
Несомненно, озвученные сотрудниками Google идеи не являются революционными и зачастую используются на практике. Но они еще не стали стандартом даже в самых критичных для нас областях применения ИИ. И, конечно, для многих профессионалов вышеописанная работа может выглядеть простой и очевидной. Тем не менее в ней от элементарных моделей до сложнейших симуляций показано влияние недостаточной детализации на результат. Кроме того, авторы работы собрали воедино идеи и выводы из колоссального количества публикаций на смежные темы. Это позволяет назвать ее отличным промежуточным итогом в развитии современных наработок в области ИИ.
В Мурманской области не добывают золото: его месторождений здесь пока не нашли. Впрочем, сообщения о находках этого металла датируются еще XVIII веком. Геологам также известны в Кольском регионе рудопроявления золота — минеральные тела, содержащее драгоценный металл в ассоциации с другими минералами, характерными для промышленных руд, но в таком количестве, что при нынешнем развитии экономики и технологий добывать его нерентабельно. Чтобы обнаружить в Кольском Заполярье месторождения золота, необходимы новые исследования. Ученые Геологического института Кольского научного центра провели их и узнали о природе местных рудопроявлений.
Ученые Санкт-Петербургского государственного университета в составе научной группы выявили ген, который позволил арахису стать природным ГМО и адаптироваться к изменяющимся условиям окружающей среды.
Американские биологи впервые провели анатомический анализ лицевых мышц койотов и обнаружили у этих хищников мышцы, которые позволяют домашним собакам строить «щенячий взгляд». Гипотетически этот признак возник при одомашнивании, но авторы новой научной работы опровергли эту версию. Вдобавок исследователи обнаружил мышцу-пучок, которая позволяет койотам щуриться.
Международная исследовательская группа смогла прорастить семя древнего дерева из рода коммифора (Commiphora), найденного в пещере Иудейской пустыни в 1980-х годах. Ученые предположили, что это растение упоминается в библейских текстах. История семени, пролежавшего в земле почти тысячу лет, не только впечатляет, но и открывает новые возможности для изучения древней флоры засушливого региона.
Натуральные, или счетные, числа обозначают количество чего-либо или порядковый номер предмета относительно других. Ноль, не относящийся к натуральным числам, кодирует пустоту, отсутствие каких бы то ни было предметов. Однако человеческий мозг реагирует на него как на очень маленькое число, обнаружили ученые из Германии.
Уголь – один из главных источников производимой электроэнергии во всем мире. В то время как запасов природного газа и нефти хватит на 40–60 лет, а уранового топлива – на 80–90, угля достаточно на тысячи лет. Но есть одна проблема: его использование наносит серьезный вред экологии. Это и выброс парниковых газов (CO2, СН4), а также SOx, NOx и твердых частиц при его сжигании, и загрязнение почвы и подземных вод в зоне складирования отходов. Однако белорусские ученые считают, что за этим видом топлива будущее, и знают, как сделать использование угля безопасным для природы.
Марс не всегда был холодным и сухим, как сейчас. Все больше фактов говорит о том, что миллиарды лет назад там текли водные потоки. А значит, была плотная атмосфера, создающая парниковый эффект и поддерживающая воду в жидком состоянии. Примерно 3,5 миллиарда лет назад вода исчезла, газовая оболочка существенно поредела. Почему? Ответ буквально лежит на поверхности, выяснили американские геологи.
Французские исследователи проанализировали тысячи спутниковых снимков поверхности Антарктиды и выяснили, что почти весь континент покрывают продольные дюны — такой рельеф часто встречается на спутнике Сатурна Титане. Ученые также узнали, какие ветры формируют антарктические дюны, и нашли противоречие, раскрывающее детали климата на континенте.
Инженеры из Белоруссии разработали альтернативный маршрут для более быстрой, безопасной и доступной перевозки грузов по сравнению с использованием Северного морского пути (СМП). Проект предусматривает организацию высокоскоростных грузопассажирских перевозок, в том числе транзитных, что станет альтернативой другим видам транспорта, в первую очередь авиации, за счет высокой скорости передвижения и уровня комфорта.
Природа она дура по большому счетуА природа по-Вашему, это что? Создатель, классная дама или процесс?
Эмоциональное окрашивание явлений весьма характерно для стадных животных.Т.е. нестадные животные, по-Вашему", не обладают понятиями "вкусно - не вкусно", "мягко - жёстко", "комфортно - не комфортно"?
Природа она дура по большому счетуА природа по-Вашему, это что? Создатель, классная дама или процесс?
Эмоциональное окрашивание явлений весьма характерно для стадных животных.Т.е. нестадные животные, по-Вашему", не обладают понятиями "вкусно - не вкусно", "мягко - жёстко", "комфортно - не комфортно"?
Вы попытались написать запрещенную фразу или вас забанили за частые нарушения.
ПонятноИз-за нарушений правил сайта на ваш аккаунт были наложены ограничения. Если это ошибка, напишите нам.
ПонятноНаши фильтры обнаружили в ваших действиях признаки накрутки. Отдохните немного и вернитесь к нам позже.
ПонятноМы скоро изучим заявку и свяжемся с Вами по указанной почте в случае положительного исхода. Спасибо за интерес к проекту.
ПонятноМы скоро прочитаем его и свяжемся с Вами по указанной почте. Спасибо за интерес к проекту.
Понятно
Комментарии