Уведомления
Авторизуйтесь или зарегистрируйтесь, чтобы оценивать материалы, создавать записи и писать комментарии.
Авторизуясь, вы соглашаетесь с правилами пользования сайтом и даете согласие на обработку персональных данных.
Инженеры Google описали ключевой изъян машинного обучения, приводящий к ошибкам ИИ
Тема искусственного интеллекта в последние годы стала невероятно популярной. Однако, несмотря на все достижения в этой области, ИИ по-прежнему чаще человека ошибается практически в любом классе задач. Специалисты Google сформулировали один из ключевых недостатков важнейшего компонента создания искусственного интеллекта — машинного обучения — и предложили способ его компенсации.
Научная работа опубликована на портале arXiv. В ней описано понятие недостаточной детализации (underspecification) в машинном обучении (machine learning). Авторы указывают на то, как в привычном процессе обучения нейросетевых алгоритмов слишком часто возникают неочевидные поначалу аномалии. В результате обученный таким образом алгоритм будет выдавать непредсказуемые или ошибочные выводы.
По мнению команды специалистов из Google, проблема в следующем. Во время обучения алгоритма на некоем наборе данных искусственный интеллект может сделать не совсем то обобщение, которое считают необходимым или эффективным его создатели. И сам по себе этот факт не является чем-то негативным, наоборот — в этом и есть «сила» нейросетей. Но, тренируя алгоритм, программисты не учитывают и далеко не всегда могут знать, что именно он выбрал в качестве дополнительных критериев. В итоге, классифицируя результаты как точные и неточные, человек обучает ИИ не совсем тому, чему хотел.
Результатом подобного обучения могут стать непредсказуемые ошибки. Например, в эпидемиологии есть математическая модель, описывающая течение эпидемии. Она строится на ключевых параметрах: коэффициенте распространения инфекции (R0) и продолжительности времени, пока заболевший заразен (D). Теоретически даже на ранних стадиях пандемии можно проанализировать эти данные по нескольким случаям и предсказать ее ход. Это крайне важно для властей и медиков, которые будут иметь понимание, когда переполнятся больницы и в какой момент и как нужно реагировать на статистику.
Однако на практике обученный по массивам медицинских данных искусственный интеллект может выдавать разные предсказания. И выбор из них реалистичного — нетривиальная задача. Дело в том, что во время обучения алгоритм будет учитывать множество побочных параметров. Так же делают и люди, но они могут объяснить свои решения, а ИИ — нет. Таким образом, необходимо еще на стадии создания алгоритма и его обучения учитывать все больше параметров. В этот момент появляется второе ключевое ограничение.
Подобных второстепенных параметров может быть огромное количество, и далеко не все из них будут так же важны для человека, как для нейросети. Фактически предсказать только по результату (прогнозу) модели, на основании каких второстепенных факторов была достигнута нужная точность, невозможно. И тем более нельзя сходу оценить, как именно изменится работа алгоритма при других масштабах поступающих данных. Свои соображения авторы описываемой работы наглядно и подробно иллюстрируют четырьмя примерами, в которых ИИ либо традиционно считается более точным, чем человек, либо его использование предполагается наиболее перспективным. Речь о компьютерном зрении, распознавании медицинских изображений и речи , а также медицинских предсказаниях на основе статистики.
Однако не все так ужасно. Авторы работы предлагают методику стрессового тестирования искусственного интеллекта. По их мнению, можно ввести в процесс машинного обучения обязательные стресс-тесты на специально подготовленных данных. Они могут быть нарочно выходящими за рамки моделей или хорошо изученными экстремальными примерами из реальной жизни. В любом случае с их помощью будут сразу обнаружены основные аномалии алгоритма.
Несомненно, озвученные сотрудниками Google идеи не являются революционными и зачастую используются на практике. Но они еще не стали стандартом даже в самых критичных для нас областях применения ИИ. И, конечно, для многих профессионалов вышеописанная работа может выглядеть простой и очевидной. Тем не менее в ней от элементарных моделей до сложнейших симуляций показано влияние недостаточной детализации на результат. Кроме того, авторы работы собрали воедино идеи и выводы из колоссального количества публикаций на смежные темы. Это позволяет назвать ее отличным промежуточным итогом в развитии современных наработок в области ИИ.
Скорее всего, это первое полноценное использование принципиально нового истребителя по его прямому назначению.
Археологи открыли древнее государство с помощью лидара.
Овес посевной (Avena sativa) входит в число наиболее важных зерновых культур и возделывается человеком уже более трех тысяч лет. Теперь в истории овса настала новая веха: ученые завершили работу над полной последовательностью генома этого растения и разобрались с его непростым эволюционным прошлым.
Группа ученых из России и Германии математически описала ситуацию, когда происходит самоостановка света — явление, при котором скорость световых импульсов падает в миллионы раз, вплоть до нуля. Оказалось, что в определенных условиях излучение в резонансно поглощающей среде создает для себя «потенциальную яму», из которой затем не может выйти. Это происходит за счет обволакивания материей безмассовых фотонов, и в результате они могут остановиться.
Скорее всего, это первое полноценное использование принципиально нового истребителя по его прямому назначению.
Ученые предупреждают: поскольку вес современных комбайнов и прочей сельхозтехники сегодня приближается к весу самых крупных животных, когда-либо бродивших по Земле, возникает парадокс уплотнения грунта.
Крупнейшие патентные ведомства мира десятилетиями или веками принципиально игнорируют любые конструкции, нарушающие начала термодинамики. С точки зрения здравого смысла это хорошо, но конспирологи и гении-самоучки считают иначе. По их мнению, такая политика стала результатом заговора (подставьте сюда любое вымышленное или не очень секретное общество либо лобби). Что ж, похоже, Роспатент встал на их сторону.
С помощью GPS-трекинга ученые проследили за перемещениями целой популяции домашних кошек в небольшом норвежском городке. Оказалось, питомцы редко уходят от дома далее 50 метров и почти не совершают длительных прогулок.
Авторы нового исследования составили таблицу ожидаемой продолжительностью жизни для собак 18 чистокровных пород и метисов. Кроме того, они узнали, кто живет дольше — суки или кобели, кастрированные или нет.
Природа она дура по большому счетуА природа по-Вашему, это что? Создатель, классная дама или процесс?
Эмоциональное окрашивание явлений весьма характерно для стадных животных.Т.е. нестадные животные, по-Вашему", не обладают понятиями "вкусно - не вкусно", "мягко - жёстко", "комфортно - не комфортно"?
Природа она дура по большому счетуА природа по-Вашему, это что? Создатель, классная дама или процесс?
Эмоциональное окрашивание явлений весьма характерно для стадных животных.Т.е. нестадные животные, по-Вашему", не обладают понятиями "вкусно - не вкусно", "мягко - жёстко", "комфортно - не комфортно"?
Вы попытались написать запрещенную фразу или вас забанили за частые нарушения.
ПонятноИз-за нарушений правил сайта на ваш аккаунт были наложены ограничения. Если это ошибка, напишите нам.
ПонятноНаши фильтры обнаружили в ваших действиях признаки накрутки. Отдохните немного и вернитесь к нам позже.
ПонятноМы скоро изучим заявку и свяжемся с Вами по указанной почте в случае положительного исхода. Спасибо за интерес к проекту.
ПонятноМы скоро прочитаем его и свяжемся с Вами по указанной почте. Спасибо за интерес к проекту.
Понятно
Комментарии