Уведомления
Авторизуйтесь или зарегистрируйтесь, чтобы оценивать материалы, создавать записи и писать комментарии.
Авторизуясь, вы соглашаетесь с правилами пользования сайтом и даете согласие на обработку персональных данных.
Человеческие тексты научат ИИ морали
Согласно новому исследованию, машины с искусственным интеллектом могут научиться моральным ценностям у людей.
Ученые из Центра когнитивных наук Дармштадтского технического университета в новой работе, результаты которой были представлены на конференции ACM/AAAI 2019 года, посвященной искусственному интеллекту, этике и обществу.
ИИ оказывает все большее влияние на общество. Вскоре автономные машины будет появляться во все больших областях повседневной человеческой жизни. Они неизбежно будут сталкиваться с принятием нелегких решений. Автономный робот должен знать, что он не может убивать людей, но нет ничего плохого в том, чтобы убить время. Роботу нужно знать, что ему лучше поджарить ломоть хлеба, чем хомяка. Другими словами, ИИ необходим моральный компас, подобный человеческому. Но сможет ли искусственный интеллект научиться моральным ценностям от людей?
В 2017 году исследователи из США и Великобритании обратили внимание на опасность неаккуратного применения ИИ, в результате которого он может научиться словосочетаниям из написанных текстов так, что они будут отражать их человеческое восприятие. Например, ИИ интерпретировал мужские имена, чаще встречающиеся в афроамериканском сообществе, как неприятные, а имена представителей европеоидной расы — как приятные. Кроме того, он чаще связывал женские имена с искусством, а мужские — с технологиями. Нейронной сети передали огромные онлайн-собрания текстов, чтобы она изучила векторные представления слов — координаты (слова переводились в точки в многомерном пространстве). Затем семантическое сходство двух слов вычислялось как расстояние между их координатами — так называемые словарные вложения, — а сложные семантические отношения вычислялись и описывались при помощи простой арифметики. Это применимо не только к безобидным примерам вроде «король — мужчина + женщина = королева», но и дискриминирующим: «мужчина — технология + искусство = женщина».
Теперь же команда ученых под руководством профессоров Кристиана Керстинга и Константина Роткопфа из Центра когнитивных наук Дармштадского технического университета успешно продемонстрировала, что машинное обучение также может вывести деонтологические и этические рассуждения о том, что «хорошо» и что «плохо», из написанного текста. Для этого ученые создали шаблонный список подсказок и ответов, включающий в себя такие вопросы, как «Должен ли я убивать людей?», и соответствующие ответы: «Да, я должен» или «Нет, я не должен».
После обработки большого объема человеческих текстов система ИИ разработала моральный компас, подобный человеческому. Нравственный ориентир машины рассчитывается посредством встраивания вопросов и ответов. Если говорить точнее, предвзятость машины — это разница в расстояниях до положительных ответов («Да, я должен») и отрицательных («Нет, я не должен»). В целом для такого морального выбора оценка предвзятости модели — это сумма оценок предвзятости для всех шаблонов «вопрос — ответ» с таким выбором.
В ходе экспериментов система научилась тому, что нельзя лгать. Также она узнала, что лучше любить родителей, чем грабить банк. И да, не следует убивать людей, но приемлемо убивать время.
Исследование предоставляет важное понимание фундаментального вопроса об ИИ: способны ли машины развить моральный компас? Если да, то как мы можем эффективно «обучить» машин нашей морали? Результаты показывают, что роботы могут размышлять о ценностях. Они действительно способны перенять человекоподобные предрассудки, но могут и перенимать человеческие нравственные выборы, «наблюдая» за нами.
В общем говоря, встраивание вопросов и ответов можно рассматривать как своего рода микроскоп, позволяющий изучать моральные ценности из собраний текстов, а также развитие морали и этики в человеческом обществе.
Результаты исследования предоставляют несколько направлений для будущей работы, связанной, в частности, со встраиванием модулей, построенных посредством машинного обучения, в системы принятия решений.
Бразильские зоологи выяснили, каких именно насекомых и пауков ловят домашние кошки в городах. Для этого использовали не полевые наблюдения, а анализ социальных сетей. Просмотрев более 17 000 видео и фото в TikTok и на фотостоке iStock, ученые нашли 550 записей кошачьей охоты. Самая частая добыча — кузнечики, сверчки, цикады и тараканы.
Чтобы охотиться при температурах ниже нуля, пауки рода Clubiona выработали особые белки-антифризы. Изучив членистоногих, собранных в грушевых садах неподалеку от города Брно (Чехия), ученые раскрыли молекулярный механизм, позволяющий этим паукам не впадать в зимнюю спячку.
Наблюдая за галактикой CANUCS-LRD-z8.6 с помощью космической обсерватории «Джеймс Уэбб», астрономы обнаружили в ее центре сверхмассивную черную дыру. Хотя она существовала всего через 500 миллионов лет после Большого взрыва, ее масса оказалась рекордной для столь ранней эпохи.
Человеческие языки разнообразны, но это разнообразие ограничивается повторяющимися закономерностями. Пытаясь описать правила, которым подчиняются различия в грамматике, лингвисты сформулировали ряд так называемых грамматических универсалий — утверждений, предположительно верных для всех или большинства языков мира. Международная команда ученых провела статистический анализ на материале 2430 языков и обнаружила, что соответствующими действительности можно считать около трети таких утверждений.
Так называемые зумеры и альфа, несмотря на молодой возраст, уже формируют ключевые поведенческие и потребительские тренды. Ученые Пермского Политеха рассказали, почему обозначение поколений начали с конца алфавита, как альфа и зумеры отличаются в способности к терпеливости, совмещении цифрового и реального «Я», подходу к профессиональной деятельности и отношении к финансам, какое мышление пришло на смену клиповому и как использование искусственного интеллекта повлияет на авторитет родителей.
Бразильские зоологи выяснили, каких именно насекомых и пауков ловят домашние кошки в городах. Для этого использовали не полевые наблюдения, а анализ социальных сетей. Просмотрев более 17 000 видео и фото в TikTok и на фотостоке iStock, ученые нашли 550 записей кошачьей охоты. Самая частая добыча — кузнечики, сверчки, цикады и тараканы.
Проанализировав данные наблюдений, полученных с помощью наземных обсерваторий за последние два десятилетия, астрономы обнаружили потенциально обитаемый мир — суперземлю Gliese 251 c (GJ 251 с). Планета обращается вокруг красного карлика на расстоянии около 18 световых лет от Земли и считается одним из самых перспективных кандидатов для поисков жизни.
Человеческие языки разнообразны, но это разнообразие ограничивается повторяющимися закономерностями. Пытаясь описать правила, которым подчиняются различия в грамматике, лингвисты сформулировали ряд так называемых грамматических универсалий — утверждений, предположительно верных для всех или большинства языков мира. Международная команда ученых провела статистический анализ на материале 2430 языков и обнаружила, что соответствующими действительности можно считать около трети таких утверждений.
По расчетам, большинство «гостей» из других звездных систем летят к Земле примерно со стороны созвездия Геркулес. Скорее всего, они время от времени падают на нашу планету, просто мы еще не научились это замечать. Как удалось вычислить, чаще всего они должны падать зимой и где-то в окрестностях экватора.
Вы попытались написать запрещенную фразу или вас забанили за частые нарушения.
Понятно
Из-за нарушений правил сайта на ваш аккаунт были наложены ограничения. Если это ошибка, напишите нам.
Понятно
Наши фильтры обнаружили в ваших действиях признаки накрутки. Отдохните немного и вернитесь к нам позже.
Понятно
Мы скоро изучим заявку и свяжемся с Вами по указанной почте в случае положительного исхода. Спасибо за интерес к проекту.
Понятно

Последние комментарии